Marine Biology

, Volume 121, Issue 4, pp 573–580 | Cite as

Species-specific patterns of hyperostosis in marine teleost fishes

  • W. F. Smith-Vaniz
  • L. S. Kaufman
  • J. Glowacki
Article

Abstract

The occurrence of swollen or hyperostotic bones in skeletal preparations, preserved museum material or whole fresh specimens of marine teleost fishes was identified in 92 species belonging to 22 families. Patterns of hyperostotic skeletal growth were typically consistent and often species-specific in all individuals larger than a certain size. The taxonomic distribution of hyperostosis in diverse phylogenetic groups suggests that it has arisen independently many times. Selected bones from two species of the family Carangidae, horse-eye jack Caranx latus Agassiz and crevalle jack Caranx hippos (Linnaeus), were examined in detail by light and electron microscopy. Nonhyperostotic bone contained osteoid-producing osteoblasts, resorbing osteoclasts, occasional osteocytes, and a rich vascular network, all characteristics of cellular bone. Thus, these fishes have a spatial juxtaposition of cellular and acellular bone tissues in adjacent and often serially homologous bone sites. The functional significance of hyperostosis is unknown, but it is a predictable manifestation of bone growth and development for the many taxa in which it occurs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell W (1793) Description of a species of Chaetodon, called, by the Malays, Ecan bonna. Phil Trans R Soc Lond 83:7–9Google Scholar
  2. Breder CM Jr (1952) The problem of directives to cellular proliferation as illustrated by ontogenetic processes in certain fishes. Growth 16:189–198Google Scholar
  3. Camp CL (ed) (1965) Philo White's narrative of a cruise in the Pacific to South America and California on the U.S. Sloop-of-war “Dale” 1841–1843. Old West Publishing Co., DenverGoogle Scholar
  4. Compagno LJV (1988) Sharks of the order Carchariniformes. Princeton University Press, Princeton, NJGoogle Scholar
  5. Ekanayake S, Hall BK (1988) Ultrastructure of osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinodontidae). Am J Anat 182:241–249Google Scholar
  6. Eschmeyer WN, Herald ES, Hammann H (1983) A field guide to Pacific coast fishes of North America. The Peterson field guide series. Houghton Mifflin Company, Boston, MAGoogle Scholar
  7. Fierstine HL (1968) Swollen dorsal fin elements in living and fossil Caranx (Teleostei: Carangidae). Cont Sci (Los Angeles) 137:1–10Google Scholar
  8. Gaudant J (1979) “Pachylebias” crassicaudus (Agassiz) (Poisson Téléostéen, Cyprinodontiforme), un constituant majeur de l'ichthyofaune du Messinien continental du Bassin Méditerranéen. Géobios, Lyon 12:47–73Google Scholar
  9. Gauldie RW, Czochanska Z (1990) Hyperostosic bones from the New Zealand snapper Chrysophrys auratus (Sparidae). Fish Bull US 88:201–206Google Scholar
  10. Glowacki J, Cox KA (1986) Osteoclast features of cells that resorb bone implants in rats. Calcif Tissue Int 39:97–103Google Scholar
  11. Glowacki J, Cox KA, O'Sullivan J, Wilkie D, Deftos LJ (1986) Osteoclasts can be induced in fish having an acellular bony skeleton. Proc natn Acad Sci 83:4104–4107Google Scholar
  12. Greenwood PH (1992) A redescription of the uniquely polychromatic African cichlid fish Tilapia guinasana Trewavas, 1936. Bull Br Mus nat Hist (D: Zool) 58:21–36Google Scholar
  13. Konnerth A (1966) Tilly bones. Oceanus 12(2):6–9Google Scholar
  14. Korschelt E (1940) Über Besonderheiten im Aufbau des Knochenfischskeletts. Z Wiss Zool 152:507–546Google Scholar
  15. Lopez E, Peignoux-Deville J, Lallier F, Martelly E, Milet C (1976) Effects of calcitonin and ultimobranchialectomy (UBX) on calcium and bone metabolism in the eel, Anguilla anguilla L. Calcif Tissue Res 20:173–186Google Scholar
  16. Meunier FJ, Desse G (1986) Les hyperostoses chez les Téléostéens: description, histologie et problémes étiologiques. Ichthyophysiol Acta 10:130–141Google Scholar
  17. Meunier FJ, Gaudant J (1987) Sur un cas de pachyostose chez un poisson due Miocéne terminal du bassin méditerranéen, Aphanius crassicaudus (Agassiz), (Teleostei, Cyprinodontidae). Cr Séanc Acad Sci, Paris (Ser 2) 305:925–928Google Scholar
  18. Meunier FJ, Huysseune A (1992) The concept of bone tissue in osteichyes. Neth J Zool 42:445–458Google Scholar
  19. Moss ML (1961) Studies of the acellular bone of teleost fish. I. Morphological and systematic variation. Acta Anat 46:343–362Google Scholar
  20. Moss ML (1962) Studies of the acellular bone of teleost fish. II. Response to fracture under normal and acalcenic conditions. Acta Anat 48:46–60Google Scholar
  21. Mundy GR (1987) Bone resorption and turnover in health and disease. Bone 8:9–16Google Scholar
  22. Nelson JS (1994) Fishes of the world, 3rd edn. John Wiley & Sons, Inc., New YorkGoogle Scholar
  23. Parenti LR (1986) The phylogenetic significance of bone types in euteleost fishes. Zool J Linn Soc 87:37–51Google Scholar
  24. Schlumberger HG, Lucke B (1948) Tumors of fishes, amphibians, and reptiles. Cancer Res 8:657–753Google Scholar
  25. Sire J-Y, Huysseune A, Meunier FJ (1990) Osteoclasts in teleost fish: light- and electron-microscopical observations. Cell Tissue Res 260:85–94Google Scholar
  26. Tiffany WJ III, Pelham RE, Howell FW (1980) Hyperostosis in Florida fossil fishes. Fla Scient 43:44–49Google Scholar
  27. Tyler JC, Purdy RW, Oliver KH (1992) A new species of Sphoeroides pufferfish (Teleostei: Tetraodontidae) with extensive hyperostosis from the Pliocene of North Carolina. Proc biol Soc Wash 105:462–482Google Scholar
  28. Weiss RE, Watabe N (1979) Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56Google Scholar
  29. White P (1841) “The Fish of Paya” logbook entry for 7 Oct. 1841. In: United States Ship “Dale”: Cruize [sic] in the Pacific, in the years 1841-'42-'43. Bancroft Library, University of California, BerkeleyGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. F. Smith-Vaniz
    • 1
  • L. S. Kaufman
    • 2
  • J. Glowacki
    • 3
    • 4
  1. 1.National Biological Survey, Southeastern Biological Science CenterU. S. Department of the InteriorGainesvilleUSA
  2. 2.Edgerton Research LaboratoryNew England AquariumBostonUSA
  3. 3.Orthopedic ResearchBrigham and Women's HospitalBostonUSA
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations