Marine Biology

, Volume 125, Issue 4, pp 671–685 | Cite as

Icy heritage: ecological evolution of the postglacial Baltic Sea reflected in the allozymes of a living fossil, the priapulid Halicryptus spinulosus

  • A. Schreiber
  • M. Eisinger
  • H. Rumohr
  • V. Storch
Article

Abstract

Genetic variation of 16 allozyme loci in 397 Halicryptus spinulosus (Priapulida) revealed overall polymorphism of P=0.438 and Hardy-Weinberg expectations for heterozygosity of He=0.060 for Baltic Sea stocks, He=0.143 for the White Sea and He=0.121 for Iceland. Maximal unbiased standard distances of D=0.0693 separated Baltic and White Sea populations. Nordic and Baltic populations could be distinguished by allozymes, but Baltic subsamples proved cohesive. Gene flow amounted to effective exchange values per generation of Nm=2.94 over 650 km of continuous habitat, Nm=10.65 over 175 km, and Nm=13.85 over 20 km. Gene flow started to decrease with geographic distance beyond a dispersal threshold of 20 km, but hierarchical GST-statistics indicated light isolation by distance beyond a minimum of 8 km. Gene flow is high for a benthic worm assumed to lack dispersal by pelagic larva, a paradox which cannot be resolved now. Baltic populations are characterized by lower heterozygosity than Nordic stocks. In the Baltic Basin, temporally continuous brackish-water conditions have only existed for the past 7000 years. The two possible colonization routes of H. spinulosus to the geologically young Baltic Sea imply genetic drift, whether by founder effect (sweepstake colonization from Iceland) or by refugial bottlenecking during the Ancylus phase of the Baltic Basin after a direct connection to the White Sea had been sequestered. Continued genetic drift is emphasized by lower heterozygosity in the ecologically unstable Belt Sea compared to the central Baltic. Allozymes falsify the reduced-mutability hypothesis to explain bradytelic evolution of Priapulida. Regional genetic homogeneity, ample polymorphism, and preference for anoxic black mud qualify H. spinulosus populations as indicators of microevolutionary responses to water circulation regimes or pollution in the Baltic Sea.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold PB, Winans GA, Teel DJ, Milner GB, Utter FM (1987) Manual for starch gel: a method for detection of genetic variation. NOAA tech Rep US Dep CommerceGoogle Scholar
  2. Arntz WE (1971) Biomasse und Produktion des Makrobenthos in den tiefen Teilen der Kieler Bucht im Jahr 1966. Kieler Meeresforsch 27: 36–72Google Scholar
  3. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  4. Bagge P, Jumppanen K, Leppäkoski E, Tulkki P (1965) Bottom fauna of the Finnish southwestern archipelago. Annls zool fenn 2: 38–52Google Scholar
  5. Battaglia B, Bisol PM, Fava G (1978) Genetic variability in relation to the environment in some invertebrates. In: Battaglia B, Beardmore JA (eds) Marine organisms. Genetics, ecology, evolution. Plenum Press, New York, pp 53–70Google Scholar
  6. Bauer K, Schreiber A (1995) Primate phylogeny from a human perspective. Fischer-Verlag, StuttgartGoogle Scholar
  7. Briscoe DA, Tait NN (1995) Allozyme evidence for extensive and ancient radiations in Australian onychophora. Zool J Linn Soc 114: 91–102Google Scholar
  8. Bullini L, Nascetti G, Ciafre S, Rumore F, Biocca E, Montalenti SG, Rita G (1978) Ricerche cariologiche ed elettroforetiche su Parascaris univalens e Parascaris equorum. Accademia Nazionale dei Lincei (Roma)/Classe di szienze fisiche, matematiche e naturali: Rendiconti Ser 8 (65): 151–159Google Scholar
  9. Bulnheim HP, Scholl A (1981) Genetic variation between geographic populations of the amphipods Gammarus zaddachi and G. salinus. Mar Biol 64: 105–115Google Scholar
  10. Chakraborty R, Haag M, Ryman N, Stahl G (1982) Hierarchical gene diversity analysis and its application to brown trout population data. Hereditas 97: 17–21Google Scholar
  11. Chakraborty R, Leimar O (1987) Genetic variation within a subdivided population. In: Ryman NF (eds) Population genetics and fisheries management. University of Washington Press, Seattle, pp 89–120Google Scholar
  12. Chen J, Bergström J, Lindström M, Hou X (1991) Fossilized softbodied fauna. Research & Exploration (National Geographic Society). 7: 8–19Google Scholar
  13. Conway Morris C (1977) Fossil priapulid worms. The Palaeontol Association, London, Spec Pap Palaeontology 20Google Scholar
  14. Crisp DJ, Ekaratne K (1984) Polymorphism in Pomatoceros. Zool J Linn Soc 80: 157–175Google Scholar
  15. Dietrich G, Köster R (1974) Geschichte der Ostsee. In: Magaard L, Rheinheimer G (eds) Meereskunde der Ostsee. Springer-Verlag, Berlin, pp 5–10Google Scholar
  16. Ekman S (1935) Tiergeographie des Meeres. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  17. Ekman S (1940) Biologische Geschichte der Nord- und Ostsee. In: Grimpe G (ed) Die Tierwelt der Nord-und Ostsee. Vol. 1b Akademische Verlagsgesellschaft, Leipzig, pp 1–40Google Scholar
  18. Eldredge N, Stanley SM (1984) Living fossils. Springer, New YorkGoogle Scholar
  19. Gooch JL (1975) Mechanisms of evolution and population genetics. In: Kinne O (ed) Marine ecology. Comprehensive, integrated treatise on life in oceans and coastal waters. Vol. II, Part 1 John Wiley, London, pp 349–409Google Scholar
  20. Gyllensten U, Ryman N (1982) Biochemical genetic variation and population structure of fourhorn Sculpin (Myoxocephalus quadricornis; Cottidae) in Scandinavia. Hereditas 108: 179–185Google Scholar
  21. Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North Holland Publishing Company, AmsterdamGoogle Scholar
  22. Hilbish TJ, Deaton LE, Koehn RK (1982) Effect of an allozyme polymorphism on regulation of cell volume. Nature, Lond 298: 688–689Google Scholar
  23. Holmquist C (1966) Die sogenannten marin-glazialen Relikte nach neucren Gesichtspunkten. Arch Hydrobiol 62: 285–326Google Scholar
  24. Hupt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar Ecol Prog Ser 92: 179–186Google Scholar
  25. Hurst CD, Skibinski DOF (1995) Comparison of allozyme and mitochondrial DNA spatial differentiation in the limpet Patella vulgata. Mar Biol 122: 257–263Google Scholar
  26. Janson K (1987) Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol J Linn Soc 30: 245–256Google Scholar
  27. Janson K, Ward RD (1984) Microgeographic variation in allozyme and shell characters in Littorina saxatilis. Biol J Linn Soc 22: 289–307Google Scholar
  28. Johnson MS, Black R (1982) Chaotic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70: 157–164Google Scholar
  29. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  30. Knight AJ, Hughes RN, Ward RD (1987) A striking example of the founder effect in the molluse Littorina saxatilis. Biol J Linn Soc 32: 417–426Google Scholar
  31. Knowlton N, Jackson JBC (1993) Inbreeding and outbreeding in marine invertebrates. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding. University of Chicago Press, Chicago, pp 200–249Google Scholar
  32. Kühlmorgen-Hille G (1963) Quantitative Untersuchungen der Bodenfauna in der Kieler Bucht und ihre jahreszeitlichen Veränderungen. Kieler Meeresforsch 19: 42–66Google Scholar
  33. Kühlmorgen-Hille G (1965) Qualitative und quantitative Veränderungen der Bodenfauna in der Bucht in den Jahren 1953–1965. Kieler Meeresforsch 21: 167–191Google Scholar
  34. Kullenberg G (1983) The Baltic Sea. In: Ketchum BH (ed) Ecosystems of the world. Vol. 26. Estuaries and enclosed seas. Elsevier Science Publishers Co., Amsterdam, pp 309–335Google Scholar
  35. Laakso M (1965) The bottom fauna in the surroundings of Helsinki. Annls zool fenn 2: 18–37Google Scholar
  36. Land J van der (1970) Systematics, zoogeography, and ecology of the Priapulida. EJ Brill, LeidenGoogle Scholar
  37. Land J van der, Norrevang A (1985) Affinities and intraphyletic relationships of the Priapulida. In: Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. The Systematics Assoc Spec Vol. 28. Clarendon Press, Oxford, pp 261–273Google Scholar
  38. Larson A (1989) The relationship of speciation and morphological evelution. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 579–598Google Scholar
  39. Lessios HA (1992) Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar Biol 112: 517–523Google Scholar
  40. Manchenko GP, Balakirev ES (1982) Level of genetic variability in marine invertebrates. In: Kafanov AI (ed) Biology of shelf zones of the world oceans. Vol. 2. Vladivostok, pp 91–93 (in Russian, cited after Nevo et al. 1984).Google Scholar
  41. Nascetti G, Grappelli C, Bullini L, Montalenti SG (1979) Ricerche sul differenziamento genetico di Ascaris lumbricoides e Ascaris suum. Acad Naz Lincei Ser 8 (67): 457–465Google Scholar
  42. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc natn Acad Sci 70: 3321–3323Google Scholar
  43. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  44. Nei M, Chesser RK (1983) Estimation of fixation indices and genetic diversities. Ann hum Genet 47: 253–259Google Scholar
  45. Nevo E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: demographic and life history correlations. In: Mani GS (ed) Evolutionary dynamics of genetic diversity. Springer-Verlag, Berlin, pp 13–213Google Scholar
  46. Oeschger R (1987) Vergleichende Untersuchungen zur biotopbedingten Langzeit-Anaerobiose und Schwefelwasserstoff-Resistenz bei einigen marinen Wirbellosen aus der Ostsee. PhD Thesis, Universität Kiel, KielGoogle Scholar
  47. Oeschger R, Theede H (1986) Untersuchungen zur Langzeit-Anaerobiose bei Halicryptus spinulosus (Priapulida). Verh dt zool Ges 79: p 401Google Scholar
  48. Oeschger R, Theede H (1988) Use of biochemical features of macrobenthic species as indicators of long-term oxygen deficiency. Kieler Meeresforsch, Sonderheft 6: 99–110Google Scholar
  49. Ovenden JR, Brashier DJ, White RWG (1992) Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii support an apparent absence of population subdivision throughout Australasia. Mar Biol 112: 319–326Google Scholar
  50. Palumbi SR (1995) Using genetics as an indirect estimator of larval dispersal. In: McEdward L (ed) Marine invertebrate larvae. CRC Press, Boca Raton, pp 369–387Google Scholar
  51. Palumbi SR, Wilson AC (1990) Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44: 403–415Google Scholar
  52. Purasjoki KJ (1944) Beiträge zur Kenntnis der Entwicklung und Ökologie der Halicryptus spinulosus-Larve. Annales Zoologici Societatis Zoologicae Botanicae Fennicae Vanamo 9(6): 1–14Google Scholar
  53. Remane A (1940) Einführung in die zoologische Ökologie der Nordund Ostsee. In: Grimpe G (ed) Die Tierwelt der Nord- und Ostsee. Vol. 1a. Akademische Verlagsgesellschaft, Leipzig, pp 1–238Google Scholar
  54. Remane A, Schlieper C (1971) Biology of brackish waters. E Schweizerbarth, StuttgartGoogle Scholar
  55. Rogers AD, Thorpe JP, Gibson R (1995) Genetic evidence for the occurrence of a cryptic species with littoral nemerteans Lineus ruber and L. viridis (Nemertea: Anopla). Mar Biol 122: 305–316Google Scholar
  56. Särkkä J (1969) The bottom fauna at the mouth of the river Kokemäenjoki, southwestern Finland. Annls zool fenn 6: 275–288Google Scholar
  57. Sauramo M (1958) Die Geschichte der Ostsee. Ann Acad scient Fenn (Ser A 3): 1–522Google Scholar
  58. Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an ecclectic overview and summary of problems. Bull mar Sci 39: 290–322Google Scholar
  59. Schreiber A, Storch V (1992) Free cells and blood proteins in Priapulus caudatus. Sarsia 76: 261–266Google Scholar
  60. Schreiber A, Storch V, Powilleit M, Higgins RP (1991) The blood of Halicryptus spinulosus (Priapulida). Can J Zool 69: 201–207Google Scholar
  61. Schreiber A, Svavarsson J, Storch V (1992) Blood proteins in bipolar Priapulida. Polar Biol 12: 667–672Google Scholar
  62. Schulz S (1969) Benthos und Sediment in der Mecklenburger Bucht. Beitr Meeresk 24/25: 15–55Google Scholar
  63. Segerstrale SG (1933) Studien über die Bodentierwelt in südfinnländischen Küstengewässern. Commentat biol 4 (8): 1–62Google Scholar
  64. Segerstrale SG (1957) On the immigration of the glacial relicts of northern Europe, with remarks on their prehistory. Commentat biol 16: 1–117Google Scholar
  65. Selander RK, Lewontin RC, Johnson WE (1970) Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic “relic”. Evolution 24: 402–414Google Scholar
  66. Shaklee JB (1984) Genetic variation and population strucure in the damselfish, Stegastes fasciolatus, throughout the Hawaiian archipelago. Copeia 1984: 629–640Google Scholar
  67. Simpson GG (1947) Tempo and mode in evolution. Columbia University Press. New YorkGoogle Scholar
  68. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39: 53–65Google Scholar
  69. Storch V (1991) Priapulida. In: Harrison FH (ed) Microscopic anatomy of invertebrates. Vol. 4. Wiley-Liss, New York, pp 333–350Google Scholar
  70. Storch V, Higgins RP (1991) Scanning and transmission electron microscopic observations on the larva of Halicryptus spinulosus. J Morph 210: 175–194Google Scholar
  71. Theede H (1974) Die Tierwelt: Ökologie. In: Magaard L, Rheinheimer G (eds) Meereskunde der Ostsee. Springer-Verlag, Berlin, pp 171–188Google Scholar
  72. Thienemann A (1950) Verbreitungsgeschichte der Süsswassertierwelt Europas. E Schweizerbarth, StuttgartGoogle Scholar
  73. Tulkki P (1965) Disappearance of the benthic fauna from the basin of Bornholm due to oxygen. Cah Biol mar 6: 455–463Google Scholar
  74. von Oertzen JA (1988) Das Leben im Brackwasser—Konfrontation oder Opportunismus? Biol Rdsch 26: 197–212Google Scholar
  75. Wake DB, Roth G, Wake MH (1983) On the problem of stasis in organismal evolution. J theor Biol 1010: 211–224Google Scholar
  76. Ward RD, Skibinski DOF, Woodwark M (1992) Protein heterozygosity, protein structure, and differentiation. Evolutionary Biol 26: 73–159Google Scholar
  77. Weigelt M (1991) The polychaete Nephthys spp. and the priapulid Halicryptus spinulosus von Siebold in Kiel Bay (western Baltic). Meeresforsch, Rep mar Res (Ber dt wiss Kommn Meeresforsch) 33: 297–311Google Scholar
  78. Weigelt M, Rumohr H (1986) Effects of wide-ranging oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983. Kieler Meeresforsch 31: 124–136Google Scholar
  79. Winans GA (1980) Geographic variation in the milkfish Chanos chanos. I. Biochemical evidence. Evolution 34: 558–574Google Scholar
  80. Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. Schreiber
    • 1
  • M. Eisinger
    • 1
  • H. Rumohr
    • 2
  • V. Storch
    • 1
  1. 1.Zoologisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Institut für MeereskundeUniversität KielKielGermany

Personalised recommendations