Archive for History of Exact Sciences

, Volume 33, Issue 4, pp 307–319 | Cite as

Euler's invention of integral transforms

  • Michael A. B. Deakin


Euler invented integral transforms in the context of second order differential equations. He used them in a fragment published in 1763 and in a chapter of Institutiones Calculi Integralis (1769). In introducing them he made use of earlier work in which a concept akin to the integral transform is implicit. It would, however, be reading too much into that earlier work to see it as contributing to the theory of the integral transform. Other work sometimes cited in this context in fact has different concerns.


Differential Equation Order Differential Equation Institutiones Calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deakin, M. A. B. (1980), Euler's version of the Laplace transform. Am. Math. Monthly 87, 264–269.Google Scholar
  2. Deakin, M. A. B. (1981), The development of the Laplace transform, 1737–1937: I. Euler to Spitzer, 1737–1880. Arch. Hist. Exact Sci. 25, 343–390.Google Scholar
  3. Deakin, M. A. B. (1982), The development of the Laplace transform, 1737–1937: II. Poincaré to Doetsch, 1880–1937. Arch. Hist. Exact Sci. 26, 351–381.Google Scholar
  4. Deakin, M. A. B., & A. C. Romano (1983), Euler's invention of integral transforms. Monash University, History of Mathematics Pamphlet 28.Google Scholar
  5. Dulac, H. (1936), Preface and Footnotes to Vol. 22, ser. I, of Leonhardi Euleri Opera Omnia (Leipzig & Berlin: Teubner).Google Scholar
  6. Eneström, G. (1913), Verzeichnis der Schriften Leonhard Eulers. Jahresb. Deutsch. Math. Verein. Ergänzungsband 4.Google Scholar
  7. Eneström, G. (1914), Footnote to S. Pincherle: La transformation de Laplace, Section 22 of Equations et opérations fonctionelles. Enc. Sci. Math. II, 5, 2 (Ed. J. Molk) (Paris: Gauthier-Villars), 36.Google Scholar
  8. Engelsman, S. B. (1982), Families of Curves and the Origins of Partial Differentiation, Dissertation, Rijksuniversiteit, Utrecht.Google Scholar
  9. Euler, L. (1733), Constructio aequationum quarundam differentialium quae indeterminatarum separationem non admittunt. Nova Acta Erudit., 369–373; Op. Omn. I 22, 15–18. (Referenced in the text as E11.)Google Scholar
  10. Euler, L. (1738a), Specimen de constructione aequationum differentialium sine indeterminatarum separatione. Comm. Acad. Sci. Petrop. 6, 168–174; Op. Omn. I 20, 1–7. (E28.)Google Scholar
  11. Euler, L. (1738b), Constructio aequationis differentialis ax n dex=dy+y 2 dx. Comm. Acad. Sci. Petrop. 6, 124–137; Op. Omn. I 22, 19–35. (E31.)Google Scholar
  12. Euler, L. (1740a), De infinitis curvis eiusdem generis seu methodus inveniendi aequationes pro infinitis curvis eiusdem generis. Comm. Acad. Sci. Petrop. 7, 174–189, 180–183 (i.e. 174–193); Op. Omn. I 22, 36–56. (E44.)Google Scholar
  13. Euler, L. (1740b), Additamentum ad dissertatione de infinitis curvis eiusdem generis. Comm. Acad. Sci. Petrop. 7, 184–200; Op. Omn. I 22, 57–75. (E45.)Google Scholar
  14. Euler, L. (1741), De oscillationibus fili flexilis quotcunque pondusculis onusti. Comm. Acad. Sci. Petrop. 8, 30–47; Op. Omn. II 10, 35–49. (E49.)Google Scholar
  15. Euler, L. (1744), De constructione aequationum. Comm. Acad. Sci. Petrop. 9, 85–97; Op. Omn. I 22, 150–161. (E70.)Google Scholar
  16. Euler, L. (1763), Constructio aequationis differentio-differentialis Ay du 2 + (B + Cu) du dy + (D+ Eu Fuu) d dy=0 sumto elemento du constante. Novi Comm. Acad. Sci. Petrop. 8, 150–156. Op. Omn. I 22, 395–402. (E274.)Google Scholar
  17. Euler, L. (1769), Institutiones Calculi Integralis, Vol. 2 (Book 1, Part 2, Section 1). (St. Petersburg: Imp. Acad. Sci.). Reprinted as Op. Omn. I 12.Google Scholar
  18. Nečas, J. (1969), Integral Transforms (Operational Calculus). In Survey of Applicable Mathematics (Ed. K. Rectorys) (London: Iliffe), 1125–1136.Google Scholar
  19. Truesdell, C. (1960), The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788. Published as Euler, Op. Omn. II 11(2).Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1985

Authors and Affiliations

  • Michael A. B. Deakin
    • 1
  1. 1.Department of MathematicsMonash UniversityClaytonAustralia

Personalised recommendations