Archive for History of Exact Sciences

, Volume 15, Issue 2, pp 115–140 | Cite as

Archimedes and the measurement of the circle: A new interpretation

  • Wilbur R. Knorr
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Apollonius, Opera, ed. J. L. Heiberg, 2 vol., Leipzig, 1891–1893.Google Scholar
  2. Archimedes, Opera, ed. J. L. Heiberg, rev. ed., 3 vol., Leipzig, 1910–1915 (III: Eutocii Commentarii).Google Scholar
  3. Boyer, C., A History of Mathematics, New York/Toronto/Sydney, 1968.Google Scholar
  4. Bruins, E. M. (ed.), Codex Constantinopolitanus, 3 vol., Leiden, 1964 (I: Photographic reproduction of the Codex; II: Greek text; III: Translation and commentary).Google Scholar
  5. Cantor, M., Vorlesungen über Geschichte der Mathematik, I, 3. ed., Leipzig, 1907.Google Scholar
  6. Curtze, M., “Die abgekürzte Multiplication”, Zeitschrift für Mathematik und Physik (historisch-literarische Abtheilung), 1895, 40, pp. 7–13.Google Scholar
  7. Dickson, L. E., History of the Theory of Numbers, 3 vol., Washington, D.C., 1919–1923.Google Scholar
  8. Dijksterhuis, E. J., (ed.), Archimedes, Copenhagen, 1956 (tr. by C. Dikshoorn from the original Dutch edition, Groningen, 1938 and Euclides, 1938–1944).Google Scholar
  9. Diophantus, Opera, ed. P. Tannery, 2 vol., Leipzig, 1893–1895.Google Scholar
  10. Euclid, Elementa, ed. J. L. Heiberg, 4 vol., Leipzig, 1883–1885.Google Scholar
  11. de Haan, B., “Notice sur quelques quadrateurs du cercle dans les Pays-Bas,” Boncompagni's Bullettino, 1874, VII, pp. 99–140.Google Scholar
  12. Heath, T. L., A History of Greek Mathematics, 2 vol., Oxford, 1921.Google Scholar
  13. Heath, T. L., Mathematics in Aristotle, Oxford, 1949.Google Scholar
  14. Heath, T. L. (ed.), The Works of Archimedes, Cambridge, 1897 (Supplement, 1906).Google Scholar
  15. Hero, Opera, 5 vol., Leipzig (III: Metrica, ed. H. Schöne, 1903; IV: Geometrica, ed. J. L. Heiberg, 1912).Google Scholar
  16. Hofmann, J. E., “Über die Annäherungen von Quadratwurzeln bei Archimedes und Heron,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 1934, 43, pp. 187–210.Google Scholar
  17. Hofmann, J. E., Geschichte der Mathematik, 3 vol., Berlin (I, rev. ed., 1963).Google Scholar
  18. Hofmann, J. E., “Über Gregorys systematische Näherungen für den Sektor eines Mittelpunktkegelschnittes,” Centaurus, 1950, 1, pp. 24–37.Google Scholar
  19. Hoppe, E., “Die zweite Methode des Archimedes zur Berechnung von ω,” Archiv für die Geschichte der Naturwissenschaften und der Technik, 1922, 8, pp. 104–107.Google Scholar
  20. Huxley, G., “Okytokion,” Greek, Roman and Byzantine Studies, 1967, 8, pp. 203–204.Google Scholar
  21. Itard, J., “Sur l'histoire des fractions continues,” Revue générale des sciences pures et appliquées, 1954, 61, pp. 5–18.Google Scholar
  22. Jolliffe, A. E., “Continued Fractions,” Encyclopaedia Britannica, Eleventh Edition, Cambridge, 1910, vol. VII.Google Scholar
  23. Karpinski, L. C., “Michigan Papyrus No. 621,” Isis, 1923, 5, pp. 20–25.Google Scholar
  24. Knorr, W., The Evolution of the Euclidean Elements, Dordrecht, Neth., 1975.Google Scholar
  25. Ludolph van Ceulen, De Circulo et Adscriptis Liber, tr. W. Snell, (from Dutch of 1596), Leyden, 1615.Google Scholar
  26. Ludolph van Ceulen, “Profesteen ende claerde wederleggingh ...,” Amsterdam, 1586, 12 pp. (Library of the University of Leiden).Google Scholar
  27. Mikami, Y., “The circle-squaring of the Chinese,” Bibliotheca Mathematica, 1909/10, 10, pp. 193–200.Google Scholar
  28. Metius, Adrianus, Practica Geometriae, Franeker, 1625 (bound as second part of Arithmeticae libri duo et geometriae libri vi, Leyden, 1626).Google Scholar
  29. Neugebauer, O., Exact Sciences in Antiquity, 2 ed., Providence, R. I., 1957.Google Scholar
  30. Neugebauer, O., & A. Sachs, Mathematical Cuneiform Texts, New Haven, Conn., 1945.Google Scholar
  31. Pappus, Commentaires ... sur l'Almageste, ed. A. Rome, Studi e Testi, Rome, vol. 54, 1931.Google Scholar
  32. Parker, R. A., Demotic Mathematical Papyri, Providence, R. I., 1972.Google Scholar
  33. Pedersen, O., “Logistics and the theory of functions. An essay in the history of Greek mathematics,” Archives Internationales d'Histoire des Sciences, 1974, 24, pp. 29–50.Google Scholar
  34. Perron, O., Die Lehre von den Kettenbrüchen, Leipzig/Berlin, 1913.Google Scholar
  35. Proclus, In Platonis Rem Publicam Commentarii, ed. W. Kroll, 2 vol., Leipzig, 1899–1901.Google Scholar
  36. Ptolemy, Opera, ed. J. L. Heiberg, 2 vol. in 3, Leipzig, 1898–1907 (English tr., R. C. Taliaferro, The Almagest of Ptolemy, Chicago, 1952).Google Scholar
  37. Tannery, P., “Heronis Alexandrini opera quae supersunt omnia” [review of Metrica, ed. H. Schöne, 1903], Mémoires scientifiques, Paris/Toulouse, 1915, III, pp. 131–157.Google Scholar
  38. Tannery, P., “Notes critiques sur les Metrica de Héron” (1904), Mémoires scientifiques, III, pp. 196–207.Google Scholar
  39. Theon of Alexandria, Commentaires ... sur l'Almageste, ed. A. Rome, 2 vol., Studi e Testi, Rome, vols. 72 (1936), 102 (1943).Google Scholar
  40. Tropfke, J., Geschichte der Elementar-Mathematik, 2. ed., 7 vol. in 3, Berlin/Leipzig, 1921–1924.Google Scholar
  41. van der Waerden, B. L., Science Awakening, Groningen, 1954.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Wilbur R. Knorr
    • 1
  1. 1.The New School of Liberal ArtsBrooklyn CollegeNew York

Personalised recommendations