Advertisement

Archive for History of Exact Sciences

, Volume 32, Issue 3–4, pp 223–349 | Cite as

Joseph H. M. Wedderburn and the structure theory of algebras

  • Karen Hunger Parshall
Article

Keywords

Structure Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Albert, A. Albert. Structure of Algebras. American Mathematical Society Colloquium Publications, vol. 24. Providence, R.I.: American Mathematical Society, 1939.Google Scholar
  2. Andrews, George E. Partitions: Yesterday and Today. Wellington, N.Z.: New Zealand Mathematical Society, 1979.Google Scholar
  3. Archibald, Raymond C., ed. A Semicentennial History of the American Mathematical Society 1888–1938. 2 vols. New York: American Mathematical Society, 1938.Google Scholar
  4. -- “Benjamin Peirce.” American Mathematical Monthly 32 (January 1925): 1–30.Google Scholar
  5. Artin, Emil. “Zur Theorie der hyperkomplexen Zahlen.” Hamburger Abhandlungen 5 (1927): 251–60.Google Scholar
  6. Bell, Eric Temple. “Fifty Years of Algebra in America.” In Semicentennial Addresses of the American Mathematical Society, 2, pp. 1–34. Edited by Raymond C. Archibald. New York: American Mathematical Society, 1938.Google Scholar
  7. Birkhoff, George D. “Fifty Years of American Mathematics.” In Semicentennial Addressesof the American Mathematical Society, 2, pp. 270–315. Edited by Raymond C. Archibald. New York: American Mathematical Society, 1938.Google Scholar
  8. Burnside, William. “On the Continuous Group That Is Defined by Any Given Group of Finite Order.” Proceedings of the London Mathematical Society 29 (January 1898): 207–24.Google Scholar
  9. “On the Continuous Group That Is Defined by Any Given Group of Finite Order (Second Paper).” Proceedings of the London Mathematical Society 29 (June 1898): 546–65.Google Scholar
  10. Cartan, Elie. “Nombres complexes, exposé, d'après l'article allemand de E. Study.” In Encyclopédie des Sciences mathématiques pures et appliquées, Tome 1, vol. 1, pp. 329–468. 7 Tomes in 28 vols. Paris: Gauthier-Villars; Leipzig: B. G. Teubner, 1904–16.Google Scholar
  11. Oeuvres Completes. 3 vols. in 6 pts. Paris: Gauthier-Villars, 1952–55.Google Scholar
  12. Première Thèse: Sur la Structure des Groupes de Transformations finis et continus. Paris: Nony, 1894.Google Scholar
  13. “Sur les groupes bilinéaires et les systèmes de nombres complexes.” Annales de la Faculté des Sciences de Toulouse 12B (1898): B1-B99.Google Scholar
  14. “Sur les systèmes de nombres complexes.” Comptes rendus 124 (May 1897): 1217–20.Google Scholar
  15. “Sur les systèmes rèels de nombres complexes.” Comptes rendus 124 (June 1897): 1296–97.Google Scholar
  16. Cayley, Arthur. The Collected Mathematical Papers of Arthur Cayley. Edited by Arthur Cayley & A. R. Forsyth. 14 vols. Cambridge: University Press, 1889–98.Google Scholar
  17. “On Jacobi's Elliptic Functions, in reply to the Rev. B. Bronwin: and on Quaternions.” In The Collected Mathematical Papers of Arthur Cayley, 1, p. 127. Edited by Arthur Cayley & A. R. Forsyth. 14 vols. Cambridge: University Press, 1889–98.Google Scholar
  18. “On Linear Transformations.” Cambridge and Dublin Mathematics Journal 1 (1846): 104–22.Google Scholar
  19. “Mémoire sur les Hyperdéterminants (Traduction d'un Mémoire anglais inséré dans le ‘Cambridge Mathematical Journal’ Avec Quelques Additions de l'Auteur.” Crelle 30 (1846): 1–37.Google Scholar
  20. “A Memoir on the Automorphic Linear Transformation of a Bipartite Quadric Function.” Philosophical Transactions of the Royal Society of London 148 (January 1858): 39–46.Google Scholar
  21. “A Memoir on the Theory of Matrices.” Philosophical Transactions of the Royal Society of London 148 (January 1858): 17–37.Google Scholar
  22. “Presidential Address to the British Associtation: September 1883.” In The Collected Mathematical Papers of Arthur Cayley, 11, pp. 429–59. Edited by Arthur Cayley & A. R. Forsyth. 14 vols. Cambridge: University Press, 1889–98.Google Scholar
  23. “Remarques sur la Notation des Fonctions algébriques.” Crelle 50 (1855): 282–85.Google Scholar
  24. “On the Theory of Linear Transformations.” Cambridge Mathematics Journal 4 (February 1845): 193–209.Google Scholar
  25. “Sur la Transformation d'une Fonction quadratique en elle-même par des Substitutions linéaires.” Crelle 50 (1855): 288–99.Google Scholar
  26. Clifford, William K. “A Fragment on Matrices.” In Mathematical Papers by William Kingdon Clifford, pp. 337–41. Edited by Robert Tucker with an Introduction by H. J. Stephen Smith. London: Macmillan & Co., 1882; reprint ed., Bronx, N.Y.: Chelsea Publishing Co., 1968.Google Scholar
  27. Mathematical Papers by William Kingdon Clifford. Edited by Robert Tucker with an Introduction by H. J. Stephen Smith. London: Macmillan & Co., 1882; reprint ed., Bronx, N.Y.: Chelsea Publishing Co., 1968.Google Scholar
  28. “Preliminary Sketch of Biquaternions.” Proceedings of the London Mathematical Society 4 (1873): 381–95.Google Scholar
  29. Cohen, Abraham. An Introduction to the Lie Theory of One-Parameter Groups with Applications to the Solution of Differential Equations. New York: G. E. Stechert & Co., 1931.Google Scholar
  30. Crowe, Michael J. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. Notre Dame: University of Notre Dame Press, 1968.Google Scholar
  31. Dedekind, Richard. Gesammelte mathematische Werke. Edited by Robert Fricke, Emmy Noether, & Oystein Ore. 3 vols. Braunschweig: F. Vieweg und Sohn, 1930–32; reprint ed., Bronx, N.Y.: Chelsea Publishing Co., 1969.Google Scholar
  32. “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen.” Göttingen Nachrichten (1885): 141–59.Google Scholar
  33. Deuring, Max. Algebren. Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 1. Berlin: Springer Verlag, 1935; reprint ed., New York: Chelsea Publishing Co., 1948.Google Scholar
  34. Dickson, Leonard Eugene. Algebras and Their Arithmetics. University of Chicago Science Series. Chicago: University of Chicago Press, 1923.Google Scholar
  35. Dictionary of Scientific Biography, 1973, ed. S.v. “Klein, Christian Felix,” by Werner Burau & Bruno Schoenberg.Google Scholar
  36. Dictionary of Scientific Biography, 1974, ed. S.v. “Peirce, Charles Saunders,” by Carolyn Eisele.Google Scholar
  37. Dictionary of Scientific Biography, 1976 ed. S.v. “Wedderburn, Joseph Henry Maclagan,” by Henry Nathan.Google Scholar
  38. Edinburgh, Scotland. Edinburgh University. Department of Special Collections. Minutes of Senatus. vol. 13 (Handwritten and Dated 31 Jan. 1903 to 13 Jan. 1906).Google Scholar
  39. Edinburgh, Scotland. Edinburgh University. Department of Special Collections. Minutes of Senatus. vol. 14 (Handwritten and Dated 3 Feb. 1906 to 10 Oct. 1908).Google Scholar
  40. Encyclopédie des Sciences pures et appliquées publiée sous les auspices des Académies des Sciences de Göttingue, de Leipzig, de Munich et de Vienne avec la Collaboration de nombreux savants. 7 Tomes in 28 vols. Paris: Gauthier-Villars; Leipzig: B. G. Teubner, 1904–16.Google Scholar
  41. Engel, Friedrich. “Sophus Lie.” Leipziger Berichte 51 (November 1899): xi–lxi.Google Scholar
  42. “Wilhelm Killing.” Jahresberichte der Deutschen-Mathematiker-Vereinigung 39 (1930): 140–58.Google Scholar
  43. Epsteen, Saul. “Semireducible Hypercomplex Number Systems.” Transactions of the American Mathematical Society 4 (October 1904): 437–44.Google Scholar
  44. Untersuchungen über lineare Differentialgleichungen 4. Ordnung und die zugehörigen Gruppen. Zurich: A. Diggelmann, 1901.Google Scholar
  45. Epsteen, Saul, & Wedderburn, Joseph H. M. “On the Structure of Hypercomplex Number Systems.” Transactions of the American Mathematical Society 6 (March 1905): 172–78.Google Scholar
  46. Forsyth, A. R. “Arthur Cayley.” Proceedings of the Royal Society of London 58 (June 1895): i-xliii.Google Scholar
  47. Frobenius, Georg. “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen.” In Ferdinand Georg Frobenius: Gesammelte Abhandlungen, 3, pp. 89–103. Edited by Jean-Pierre Serre. 3 vols. Berlin: Springer Verlag, 1968.Google Scholar
  48. “Über endliche Gruppen.” In Ferdinand Georg Frobenius: Gesammelte Abhandlungen, 2, pp. 632–63. Edited by Jean-Pierre Serre. 3 vols. Berlin: Springer Verlag, 1968.Google Scholar
  49. Gesammelte Abhandlungen. Edited by Jean-Pierre Serre. 3 vols. Berlin: Springer Verlag, 1968.Google Scholar
  50. “Ueber lineare Substitutionen und bilineare Formen.” In Ferdinand Georg Frobenius: Gesammelte Abhandlungen, 1, pp. 343–405. Edited by Jean-Pierre Serre. 3 vols. Berlin: Springer Verlag, 1968.Google Scholar
  51. “Über die Primfactoren der Gruppendeterminante II.” In Ferdinand Georg Frobenius: Gesammelte Abhandlungen, 3, pp. 275–83. Edited by Jean-Pierre Serre. 3 vols. Berlin: Springer Verlag, 1968.Google Scholar
  52. “Theorie der hyperkomplexen Grössen.” Berliner Sitzungsberichte 30 (April 1903): 504–37.Google Scholar
  53. “Theorie der hyperkomplexen Grössen II.” Berliner Sitzungsberichte 30 (June 1903): 634–45.Google Scholar
  54. “Uber vertauschbare Matrizen.” In Ferdinand Georg Frobenius: Gesammelte Abhandlungen, 2, pp. 705–18. Edited by Jean-Pierre Serre. 3 vols. Berlin: Springer Verlag, 1968.Google Scholar
  55. Gauss, Carl Friedrich. Disquisitiones Arithmeticae. Translated by Arthur A. Clark, S.J. New Haven: Yale University Press, 1966.Google Scholar
  56. Ginsburg, Jekuthiel. “A Hitherto Unpublished Letter by Benjamin Peirce.” Scripta Mathematica 2 (May 1934): 278–82.Google Scholar
  57. Hamilton, William Rowan. The Mathematical Papers of Sir William Rowan Hamilton. Edited by H. Halberstam & R. E. Ingram. 3 vols. Cambridge: University Press, 1967.Google Scholar
  58. Hankins, Thomas L. Sir William Rowan Hamilton. Baltimore: Johns Hopkins University Press, 1980.Google Scholar
  59. Happel, Dieter. “Klassifikationstheorie endlich-dimensionaler Algebren in der Zeit von 1880 bis 1920.” L'Enseignement mathématique, 2d ser., 26 (January–June 1980): 91–102.Google Scholar
  60. Hawkes, Herbert. “Estimate of Peirce's ‘Linear Associative Algebra.’” American Journal of Mathematics 24 (1902): 87–95.Google Scholar
  61. Hawkins, Thomas. “Another Look at Cayley and the Theory of Matrices.” Archives internationales d'Histoire des Sciences 26 (June 1977): 82–112.Google Scholar
  62. “Hypercomplex Numbers, Lie Groups, and the Creation of Group Representation Theory.” Archive for History of Exact Sciences 8 (April 1972): 243–87.Google Scholar
  63. “New Light on Frobenius' Creation of the Theory of Group Characters.” Archive for History of Exact Sciences 12 (August 1974): 217–43.Google Scholar
  64. “The Origins of the Theory of Group Characters.” Archive for History of Exact Sciences 7 (March 1971): 142–70.Google Scholar
  65. “The Theory of Matrices in the 19th Century.” In Proceedings of the International Congress of Mathematicians: Vancouver, 1974, 2, pp. 561–70. n.p.: Canadian Mathematical Congress, 1975.Google Scholar
  66. “Weierstrass and the Theory of Matrices.” Archive for History of Exact Sciences 17 (July 1977): 119–63.Google Scholar
  67. “Wilhelm Killing and the Structure of Lie Algebras.” Archive for History of Exact Sciences 23 (July 1982): 127–92.Google Scholar
  68. Herstein, Israel N. Noncommutative Rings. Carus Mathematical Monographs, no. 15. n.p.: Mathematical Association of America, 1968.Google Scholar
  69. Jacobson, Nathan. “The Radical and Semi-simplicity for Arbitrary Rings.” American Journal of Mathematics 67 (1945): 300–20.Google Scholar
  70. Killing, Wilhelm. “Die Zusammensetzung der stetigen endlichen Transformationsgruppen.” Mathematische Annalen 31 (1887): 252–90.Google Scholar
  71. “Die Zusammensetzung der stetigen endlichen Transformationsgruppen: Zweiter Teil.” Mathematische Annalen 33 (1889): 1–48.Google Scholar
  72. Kline, Morris. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press, 1972.Google Scholar
  73. Lejeune-Dirichlet, Peter G. Vorlesungen über Zahlentheorie. Edited by Richard Dedekind. 4th ed. Braunschweig: F. Vieweg und Sohn, 1893; reprint ed., New York: Chelsea Publishing Co., 1968.Google Scholar
  74. Lie, Sophus. Gesammelte Abhandlungen auf Grund einer Bewilligung aus dem norwegischen Forschungsfonds von 1919 und mit Unterstützung der Videnskapsakademie zu Oslo und der Akademie der Wissenschaften zu Leipzig. Edited by Friedrich Engel. 6 vols. and 4 supps. Leipzig: B. G. Teubner; Oslo: H. Aschehoug & Co., 1922–37.Google Scholar
  75. Lie, Sophus. Sophus Lie's 1880 Transformations Group Paper. Edited by Robert Hermann and Translated by Michael Ackerman. Lie Groups: History, Frontiers, and Applications, vol. 1. Brookline, Mass.: Math Sci Press, 1975.Google Scholar
  76. Lie, Sophus & Engel, Friedrich. Theorie der Transformationsgruppen. 3 vols. Leipzig: B. G. Teubner, 1888–93.Google Scholar
  77. Lie, Sophus, & Scheffers, Georg. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Leipzig: B. G. Teubner, 1893.Google Scholar
  78. Molien, Theodor. “Ueber Systeme höherer complexer Zahlen.” Mathematische Annalen 41 (1893): 83–156.Google Scholar
  79. [Newton, H. A.]. “Benjamin Peirce,” Proceedings of the American Academy of Arts and Sciences. n.s., 8 (May 1881): 443–54.Google Scholar
  80. Parshall, Karen Hunger. “E. H. Moore and the Founding of a Mathematical Community in America: 1892–1902.” Annals of Science to appear.Google Scholar
  81. “In Pursuit of the Finite Division Algebra Theorem and Beyond: Joseph H. M. Wedderburn, Leonard E. Dickson, and Oswald Veblen.” Archives internationales d'Histoire des Sciences, 33 (Dec. 1983): 274–99Google Scholar
  82. Peirce, Benjamin. Ideality in the Physical Sciences. Boston: Little, Brown, & Co., 1881.Google Scholar
  83. “Linear Associative Algebra with Notes and Addenda by C. S. Peirce, Son of the Author.” American Journal of Mathematics 4 (1881): 97–229.Google Scholar
  84. “On the Uses and Transformations of Linear Algebra.” Proceedings of the American Academy of Arts and Sciences, n.s., 2 (May 1875): 395–400.Google Scholar
  85. Peirce, Charles S. “A Communication from Mr. C. S. Peirce.” Johns Hopkins University Circulars 2 (1883): 86–88.Google Scholar
  86. Peterson, Sven R. “Benjamin Peirce: Mathematician and Philosopher.” Journal of the History of Ideas 16 (January 1955): 89–112.Google Scholar
  87. Poincaré, Henri. “Sur les nombres complexes.” Comptes rendus 99 (November 1883): 740–42.Google Scholar
  88. “Rapport sur les travaux de M. Cartan à la Faculté des Sciences à l'Université de Paris.” Acta Mathematica 38 (1921): 137–45.Google Scholar
  89. Pycior, Helena M. “Early Criticism of the Symbolical Approach to Algebra.” Historia Mathematica 9 (November 1892): 392–412.Google Scholar
  90. “George Peacock and the British Origins of Symbolical Algebra.” Historia Mathematica 8 (February 1981): 23–45.Google Scholar
  91. “Benjamin Peirce's ‘Linear Associative Algebra.’” Isis 70 (December 1979): 537–51.Google Scholar
  92. Richards, Joan. “The Art and the Science of British Algebra: A Study in the Perception of Mathematical Truth.” Historia Mathematica 7 (August 1980): 345–65.Google Scholar
  93. Scheffers, Georg. “Ueber die Berechnung von Zahlensystemen.” Leipziger Berichte 41 (December 1889): 400–57.Google Scholar
  94. “Bestimmung einer Klasse von Beruhrungstransformationsgruppen.” Acta Mathematica 14 (1891): 117–78.Google Scholar
  95. “Ueber die Reducibilität complexer Zahlensystemen.” Mathematische Annalen 41 (1893): 601–604.Google Scholar
  96. “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen.” Leipziger Berichte 41 (June 1889): 290–307.Google Scholar
  97. “Zurückführung complexer Zahlensysteme auf typische Formen.” Mathematische Annalen 39 (1891): 294–340.Google Scholar
  98. Schur, Friedrich. “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen.” Mathematische Annalen 33 (1889): 49–60.Google Scholar
  99. Shaw, James Byrnie. Synopsis of Linear Associative Algebra: A Report on its Natural Development and Results Reached up to the Present Time. Washington, D.C.: Carnegie Institution of Washington, 1907.Google Scholar
  100. Spottiswoode, William. “Remarks on Some Recent Generalizations of Algebra.” Proceedings of the London Mathematical Society 4 (1873): 147–64.Google Scholar
  101. Steinitz, Ernst. “Algebraische Theorie der Körper.” Crelle 116 (1910): 1–132.Google Scholar
  102. Algebraische Theorie der Körper. Edited by Reinhold Baer & Helmut Hasse. New York: Chelsea Publishing Co., 1950.Google Scholar
  103. Study, Eduard. “Complexe Zahlen und Transformationsgruppen.” Leipziger Berichte 41 (May 1889): 177–228.Google Scholar
  104. --. “Über Systeme von complexen Zahlen.” Göttingen Nachrichten (1889): 237–68.Google Scholar
  105. Sylvester, James Joseph. “Address on Commemoration Day at Johns Hopkins University, 22 February 1877.” In The Collected Mathematical Papers of James Joseph Sylvester, 3, pp. 72–87. Edited by H. F. Baker. 4 vols. Cambridge: University Press, 1904–12; reprint ed., New York: Chelsea Publishing Co., 1973.Google Scholar
  106. The Collected Mathematical Papers of James Joseph Sylvester. Edited by H. F. Baker. 4 vols. Cambridge: University Press, 1904–12; reprint ed., New York: Chelsea Publishing Co., 1973.Google Scholar
  107. “On the Equation to the Secular Inequalities in the Planetary Theory.” Philosophical Magazine 16 (March 1883): 267–69.Google Scholar
  108. The Laws of Verse; or, Principles of Versification Exemplified in Metrical Translations: Together with an Annotated Reprint of the Inaugural Presidential Address to the Mathematical and Physical Sections of the British Association at Exeter. London: Longmans, Green, & Co., 1870.Google Scholar
  109. “Lectures on the Principles of Universal Algebra.” American Journal of Mathematics 6 (1884): 270–86.Google Scholar
  110. “On the Method of Reciprocants as Containing an Exhaustive Theory of the Singularities of Curves.” In The Collected Mathematical Papers of James Joseph Sylvester, 4, pp. 278–302. Edited by H. F. Baker. 4 vols. Cambridge: University Press, 1904–12; reprint ed., New York: Chelsea Publishing Co., 1973.Google Scholar
  111. “Note on the Theory of Simultaneous Linear Differential or Difference Equations with Constant Coefficients.” American Journal of Mathematics 4 (1881): 321–26.Google Scholar
  112. “Sur les Puissances et les Racines de Substitutions linéaires.” Comptes rendus 94 (January 1882): 55–59.Google Scholar
  113. “Sur les quantités formant un groupe de nonions analogues aux quaternions de Hamilton.” Comptes rendus 97 (December 1883): 1336–40.Google Scholar
  114. “Sur les quantités formant un groupe de nonions analogues aux quaternions de Hamilton.” Comptes rendus 98 (February 1884): 273–76, 471–75.Google Scholar
  115. “On Quaternions, Nonions, Sedenions, etc.” Johns Hopkins University Circulars 2 (December 1883): 7–9.Google Scholar
  116. “Sur les Racines des Matrices unitaires.” Comptes rendus 94 (February 1882): 396–99.Google Scholar
  117. “On the Relation Between the Minor Determinants of Linearly Equivalent Quadratic Functions.” In The Collected Mathematical Papers of James Joseph Sylvester, 1, pp. 241–50. Edited by H. F. Baker, 4 vols, Cambridge: University Press, 1904–12; reprint ed., New York: Chelsea Publishing Co., 1973.Google Scholar
  118. “On Tchebysheff's Theory of the Totality of the Prime Numbers Comprised with Given Limits.” American Journal of Mathematics 4 (1881): 230–47.Google Scholar
  119. “On the Three Laws of Motion in the World of Universal Algebra.” Johns Hopkins University Circulars 3 (January 1884): 33–34.Google Scholar
  120. “A Word on Nonions.” Johns Hopkins University Circulars 1 (August 1882): 241–42.Google Scholar
  121. Taber, Henry. “On the Theory of Matrices.” American Journal of Mathematics 11 (1889): 337–95.Google Scholar
  122. Taylor, H. S.. “Joseph Henry Maclagen Wedderburn: 1882–1948.” Obituary Notices of Fellows of the Royal Society 6 (1948–49): 619–25.Google Scholar
  123. Turner, A. Logan, ed. History of the University of Edinburgh: 1883–1933. Edinburgh: Oliver and Boyd, 1933.Google Scholar
  124. Veblen, Oswald, & Wedderburn, Joseph H. M. “Non-Desarguesian and Non-Pascalian Geometries.” Transactions of the American Mathematical Society 8 (July 1907): 379–88.Google Scholar
  125. Warren, John. A Treatise on the Geometrical Representations of the Square Roots of Negative Quantities. Cambridge: University Press, 1828.Google Scholar
  126. Wedderburn, Joseph H. M. “On the Applications of Quaternions in the Theory of Differential Equations.” Transactions of the Royal Society of Edinburgh 40 (July 1903): 709–21.Google Scholar
  127. “On the General Scalar Function of a Vector.” Proceedings of the Royal Society of Edinburgh 24 (March 1903): 409–12.Google Scholar
  128. “On Hypercomplex Numbers.” Proceedings of the London Mathematical Society, 2d ser., 6 (November 1907): 77–118.Google Scholar
  129. “On the Isoclinal Lines of a Differential Equation of the First Order.” Proceedings of the Royal Society of Edinburgh 24 (January 1903): 400–408.Google Scholar
  130. “Note on Hypercomplex Numbers.” Proceedings of the Edinburgh Mathematical Society 25 (1906–1907): 2–4.Google Scholar
  131. “Note on the Linear Matrix Equation.” Proceedings of the Edinburgh Mathematical Society 22 (1903–1904): 49–53.Google Scholar
  132. --. “Pamphlets.” vols. 7, 8 and 9.Google Scholar
  133. “A Theorem in Hypercomplex Numbers.” Proceedings of the Royal Society of Edinburgh 26 (January 1906): 48–50.Google Scholar
  134. --. “The Theory of Linear Associative Algebras.” D.Sc. dissertation, University of Edinburgh, 1908.Google Scholar
  135. Weierstrass, Karl. Mathematische Werke. 7 vols. Berlin: Mayer & Müller; Leipzig: Akademische Verlagsgesellschaft, 1894–1927; reprint ed., Hildeshum: Georg Ohms Verlagsbuchhandlung; New York: Johnson Reprint Corporation, 1967.Google Scholar
  136. -- “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen.” Göttingen Nachrichten (1884): 395–414.Google Scholar
  137. Weyl, Hermann. Classical Groups: Their Invariants and Representations. 2d ed. with supps. Princeton Mathematical Series, no. 1. Princeton: University Press, 1946.Google Scholar
  138. Weyr, Eduard. “Répartition des matrices en espèces et formation de toutes les espèces.” Comptes rendus 100 (April 1885): 966–69.Google Scholar
  139. “Sur la théorie des matrices.” Comptes rendus 100 (March 1885): 787–89.Google Scholar
  140. “Sur la théorie des quaternions.” Comptes rendus 98 (April 1884): 906–907, 1320–23.Google Scholar
  141. Yates, R. C. “Sylvester at the University of Virginia.” American Mathematical Monthly 44 (April 1937): 194–201.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1985

Authors and Affiliations

  • Karen Hunger Parshall
    • 1
  1. 1.Sweet Briar CollegeSweet Briar

Personalised recommendations