Advertisement

Archive for History of Exact Sciences

, Volume 18, Issue 4, pp 301–342 | Cite as

The origin of mathematics

  • A. Seidenberg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, W.W.R., A Short Account of the History of Mathematics, 3rd ed., London: 1901.Google Scholar
  2. Becker, O., & J.E. Hofmann, Geschichte der Mathematik, Bonn: 1951.Google Scholar
  3. Bell, E.T. Development of Mathematics, New York: 1940.Google Scholar
  4. Braidwood, R.J., “Jericho and its Setting in Near Eastern History,” Antiquity, 31 (1957).Google Scholar
  5. Bürk, A., „Das Āpastamba-Śulba-Sūtra,” Zeit. d. deutschen morgenländischen Ges. 55 (1901), 56 (1902).Google Scholar
  6. Cantor, M., „Gräko-indische Studien,” Zeit. f. Math. u. Physik (Hist.-lit. Abt.), 22 (1877).Google Scholar
  7. Cantor, M., „Über die älteste indische Mathematik,” Archiv der Math. u. Phys. 8 (1904).Google Scholar
  8. Cantor, M., Vorlesungen über Geschichte der Mathematik, Vol. 1, Leipzig: 1907.Google Scholar
  9. Converse, H.S., “The Agnicayana Rite: Indigenous Origin?” History of Religion, 14 (1974).Google Scholar
  10. Datta, B., The Science of the Śulba, Calcutta: 1932.Google Scholar
  11. Gandz, S., “Origin and development of quadratic equations in Babylonia, Greek, and early Arabic algebra,” Osiris 3 (1937).Google Scholar
  12. Geldner, K.F., Der Rig-Veda, Harvard Oriental Series, vols. 33–36, Cambridge: 1951–7.Google Scholar
  13. Heath, T., The Thirteen Books of Euclid's Elements, 3 vols., New York: 1956.Google Scholar
  14. Keith, A.B., “Review of von Schroeder's Kathaka Sa\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m}\)hitā,” J. Royal Asiatic Soc., 1910.Google Scholar
  15. Khadilkar, S.D., Kātyāyana Śulba Sūtra, Poona: 1974.Google Scholar
  16. Knorr, W.R., The Evolution of the Euclidean Elements, Dordrecht: 1975.Google Scholar
  17. Kroeber, A.L., Anthropology, New York: 1923 (with Supplement, 1923–1933).Google Scholar
  18. Mahoney, M.S., “Babylonian Algebra: Form VS. Content,” Studies in History and Philosophy of Science, vol. 1 (1971).Google Scholar
  19. The Mānava-Śrautasūtra, translated by J.M. van Gelder, The Śata-Pi\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{t}\)aka Series, vol. 27, New Delhi: 1963.Google Scholar
  20. Mazumdar, N.K., “Mânava Śulba Sûtrum,” J. Dept. of Letters, Calcutta Univ., vol. 8 (1922).Google Scholar
  21. Müller, C., „Die Mathematik der Śulvasūtra,” Abh. Math. Sem., Hamburg. 7 (1929).Google Scholar
  22. Neugebauer, O., „Zur Geschichte der Pythagoräischen Lehrsatzes,” Nachrichten von der Gesellschaft der Wissenschaft zu Göttingen (Math.-Phys. Klasse), 1928.Google Scholar
  23. Neugebauer, O., „Mathematische Keilschrift-Texte,” Quellen u. Studien zur Geschichte d. Math. Ast. u. Phys. Abt. A. 3 (1935).Google Scholar
  24. Neugebauer, O., The Exact Sciences in Antiquity (2nd ed.), New York: 1962.Google Scholar
  25. Neugebauer, O., & A. Sachs. Mathematical Cuneiform Texts, New Haven: 1945.Google Scholar
  26. Renou, L., & J. Filliozat. L'Inde Classique, I, Paris: 1947.Google Scholar
  27. Rivers, W.H.R., “The Disappearance of Useful Arts,” in Westermarck's Festskrift, Helsingfors, 1912.Google Scholar
  28. The Śatapatha Brāhmana, translated by J. Eggeling, (The Sacred Books of the East, Vols. 12, 26, 41, 43, 44) Oxford: 1882–1900.Google Scholar
  29. Seidenberg, A., “The Ritual Origin of Geometry,” Archive for History of Exact Sciences, 1 (1962).Google Scholar
  30. Seidenberg, A., “On the area of a semi-circle,” Archive for History of Exact Sciences, 9 (1972).Google Scholar
  31. Seidenberg, A., “Did Euclid's Elements, Book I, develop geometry axiomatically?” Archive for History of Exact Sciences, 14 (1975).Google Scholar
  32. Seidenberg, A., “The Geometry of the Vedic Rituals,” to appear in Agni, the Vedic Ritual of the Fire Altar, Frits Staai (ed.).Google Scholar
  33. Staal, F. (ed.), Agni, the Vedic Ritual of the Fire Altar, to appear.Google Scholar
  34. The Taittirīya Sa \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m}\) hitā, translated by A.B. Keith, Harvard Oriental Series, Vols. 18, 19, Cambridge: 1914.Google Scholar
  35. Thibaut, G., “Śulvasūtra of Baudhāyana,” The Pandit, 9 (1874), 10 (1875), n.s. 1 (1876–77).Google Scholar
  36. Thibaut, G., “On the Sulvasūtras,” J. Asiatic Soc. Bengal, 44:1 (1875).Google Scholar
  37. Thibaut, G., „Astronomie, Astrologie und Mathematik” (in Grundriß d. Indo-Arischen Philologie u. Alter., 3:9), Strassburg: 1899.Google Scholar
  38. Unguru, S., “On the need to rewrite the history of Greek mathematics,” Archive for History of Exact Sciences, 15 (1975).Google Scholar
  39. van der Waerden, B. L. Science Awakening (2nd ed.), Groningen: 1961.Google Scholar
  40. van der Waerden, B.L., Science Awakening II, The Birth of Astronomy, Leyden: 1974.Google Scholar
  41. van der Waerden, B.L., “Defense of a ‘shocking’ point of view,” Archive for the History of Exact Sciences, 15 (1976).Google Scholar
  42. Weber, A. “Review of L. von Schroeder's Pythagoras und die Inder,” Literarisches Zentralblatt, 35 (1884).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Seidenberg
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations