Archive for History of Exact Sciences

, Volume 16, Issue 1, pp 37–85

The concept of function up to the middle of the 19th century

  • A. P. Youschkevitch
Article
  • 656 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. B. Boyer, The History of the Calculus and its Conceptual Development (1939). N.Y., 1959 (3rd ed.).Google Scholar
  2. 2.
    D. E. Smith, History of Mathematics, v. 1 (1923). N.Y., 1958.Google Scholar
  3. 3.
    W. Hartner & M. Schramm, Al-Biruni and the theory of the solar apogee: an example of originality in Arabic Science. In: Scientific change, ed. by A. C. Crombie. London, 1963, 206–218.Google Scholar
  4. 4.
    C. B. Boyer, History of Analytic Geometry. N.Y., 1956.Google Scholar
  5. 5.
    J. E. Hofmann, Geschichte der Mathematik, Bd. I, 2. Aufl. Berlin, 1963.Google Scholar
  6. 6.
    A. C. Crombie, Augustine to Galileo, v. I–II, 2nd ed. London-Melbourne-Toronto, 1959–1961.Google Scholar
  7. 7.
    H. Wieleitner, Der “Tractatus de latitudinibus formarum” des Oresme. Bibl. Mathematica, 3. F., Bd. 13 (1912/13), 115–145; see also his Über den Funktionsbegriff und die graphische Darstellung bei Oresme. Ibid., 3. F., Bd. 14, 193–243 (1914).Google Scholar
  8. 8.
    E. T. Bell, The Development of Mathematics (1940), 2nd ed. N.Y.-London, 1945.Google Scholar
  9. 9.
    O. Pedersen, Logistics and the Theory of Functions. Arch. Intern. d'Hist. d. Sciences, 24, N. 94, 29–50. (1974).Google Scholar
  10. 10.
    A. F. Monna, The Concept of Function in the 19th and 20th Centuries, in Particular with Regard to the Discussions between Baire, Borel and Lebesgue. Arch. for Hist. of Exact Sciences, 9, 57–84 (1972).Google Scholar
  11. 11.
    Kenneth O. May, Elements of Modern Mathematics. 2nd Printing. Reading, Mass.-Palo Alto-London, 1962.Google Scholar
  12. 12.
    O. Neugebauer, The Exact Sciences in Antiquity. 2nd ed. Providence. R.I., 1957.Google Scholar
  13. 13.
    H. G. Zeuten, Die Lehre von den Kegelschnitten im Alterum (1886). 2nd ed. Hildesheim, 1966.Google Scholar
  14. 14.
    H. G. Zeuten, Histoire des mathématiques dans l'antiquité et le moyen age. Ed. française, revue et corrigée par l'auteur. Paris, 1902 (1st ed. Köbenhavn, 1893).Google Scholar
  15. 15.
    N. Bourbaki, Eléments d'histoire des mathématiques. 2e éd. revue, corrigée, augmentée. Paris, 1969.Google Scholar
  16. 16.
    A. P. Youschkevitch, Remarques sur la méthode antique d'exhaustion. In: Mélanges Alexandre Koyré, I, Paris, 1964, 635–653.Google Scholar
  17. 17.
    D. T. Whiteside, Patterns of Mathematical Thought in the later Seventeenth Century. Arch. for History of Exact Sciences, 1, N 3, 179–388 (1961).Google Scholar
  18. 17a.
    O. Schirmer, Studien zur Astronomie der Araber. Sitzungsber. d. Phys.-Med. Sozietät zu Erlangen, Bd. 58 (1926).Google Scholar
  19. 18.
    Nicole Oresme and the Medieval Geometry of Qualities and Motions. A Treatise on the Uniformity and Difformity of Intensities known as Tractatus de configurationibus qualitatum et motuum. Ed. by M. Clagett. Madison, Milwaukee & London 1968. — Russ. ed. by V. P. Zoubov in Istoricomathematicheskie issledovania, vol. XI, 601–731 (1958).Google Scholar
  20. 19.
    M. Clagett, The Science of Mechanics in the Middle Ages. Madison, 1959.Google Scholar
  21. 20.
    Geometria à Renato Des Cartes Anno 1637 Gallicè edita; nunc autem ... in linguam Latinam versa et commentariis illustrata, Opera atque studio Francisci à Schooten ... Lugduni Batavorum, 1649.Google Scholar
  22. 21.
    Nicole Oresme, Quaestiones super geometriam Euclidis, ed. by H. L. L. Busard, 2 Vols., Leiden, 1961.Google Scholar
  23. 22.
    Schramm, M., Steps Towards the Idea of Function: A Comparison Between Eastern and Western Science of Middle Ages. History of Science, 4, 70–103 (1965).Google Scholar
  24. 23.
    Oeuvres de Fermat, éd. P. Tannery & Ch. Henry, t.I, Paris, 1891.Google Scholar
  25. 24.
    Oeuvres de Descartes, éd. Ch. Adam & P. Tannery, t. VI, Paris, 1903.Google Scholar
  26. 25.
    F. Engels, Dialektik der Natur. Berlin, 1958.Google Scholar
  27. 26.
    B. Bolzano, Rein analytischer Beweis ... H. Hankel, Untersuchungen über die unendlich oft oszillierenden und unstetigen Funktionen (1870). Hg. von Ph. E. B. Jourdain, Leipzig, 1905 (First ed. as “Gratulationsprogramm” der Tubinger Universität, 1870).Google Scholar
  28. 27.
    P. Boutroux, L'idéal scientifique des mathématiciens. Paris, 1920.Google Scholar
  29. 28.
    I. Barrow, Lectiones geometricae. London, 1670; Lectiones mathematicae. London, 1683.Google Scholar
  30. 29.
    Margaret E. Baron, The Origins of the Infinitesimal Calculus. Pergamon Press, 1969.Google Scholar
  31. 30.
    J. Wallis ... De Algebra Tractatus Historicus et Practicus. Operum Mathematicorum Volumen alterum. Oxoniae, 1693.Google Scholar
  32. 31.
    The Correspondence of Isaac Newton, vol. III. Ed. by H. W. Turnbull. Cambridge, 1961.Google Scholar
  33. 32.
    I. Newton, The Method of Fluxions and Infinite Series, with its Application to the Geometry of Curve-Lines. Translated ... by John Colson. London, 1736.Google Scholar
  34. 32a.
    The Mathematical Papers of Isaac Newton, Vol. III, 1670–1673. Ed. by D. T. Whiteside with the assistance ... of M. A. Hoskin & A. Prag. Cambridge, 1969.Google Scholar
  35. 33.
    Leibnizens mathematische Schriften, hsg. von C. I. Gerhardt, I–VII. Berlin-Halle, 1849–1863.Google Scholar
  36. 34.
    D. Mahnke, Neue Einblicke in die Entdeckungsgeschichte der höheren Analysis. Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1925, NI (1926).Google Scholar
  37. 35.
    Joh. Bernoulli, Opera omnia, I–IV. Lausannae et Genevae, 1742.Google Scholar
  38. 36.
    M. Dehn & E. Hellinger, On James Gregory's “Vera Quadratura”. In: James Gregory Tercentenary Memorial Volume, ed. by H. W. Turnbull. London, 1839, 468–478.Google Scholar
  39. 37.
    G. F. de l'Hospital, Analyse des infiniments petits pour l'intelligence des lignes courbes. Paris, 1696.Google Scholar
  40. 37a.
    J. Gregory, Vera circuli et hyperbolae quadratura ... Patavii [Padua, 1667].Google Scholar
  41. 37b.
    Chr. J. Scriba, James Gregory frühe Schriften zur Infinitesimalrechnung. Giessen, 1957.Google Scholar
  42. 38.
    Chr. Wolff, Mathematisches Lexicon (1716), hsg. von J. E. Hofmann. Hildesheim, 1965.Google Scholar
  43. 39.
    Leonhardi Euleri Opera Omnia, ser. I, vol. VIII, ed. A. Krazer & F. Rudio, 1922.Google Scholar
  44. 40.
    Oeuvres de J.L. Lagrange, publiées par J. A. Serret, t. IX. Paris, 1881.Google Scholar
  45. 41.
    Leonhardi Euleri Opera omnia, ser. I, vol. IX, ed. A. Speiser, 1945.Google Scholar
  46. 42.
    I. Grattan-Guinness, The Development of the Foundations of Mathematical Analysis from Euler to Riemann. Cambridge, Mass.-London, 1970.Google Scholar
  47. 42a.
    A. Speiser, Über die diskontinuirlichen Kurven, pp. XXI–XXIV of the editor's introduction, Leonhardi Euleri Opera omnia, ser. I, vol. XXV, 1952.Google Scholar
  48. 42b.
    C. Truesdell, editor's introduction, Leonhardi Euleri Opera omnia, ser. II, vol. 13, 1956.Google Scholar
  49. 43.
    А. И. Маркушевич, Основные понятия математического аналиэа и тео рии функций в трудах Эйлера.—Леонард Эйлер. Сборник статеЙ ... Москва, 1958, 98–132.Google Scholar
  50. 44.
    Leonhardi Euleri Opera omnia, ser. IV-A, vol. I, ed. A. Juškevič, V. Smirnov & W. Habicht, 1975.Google Scholar
  51. 45.
    J. d'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration; Suite des recherches ... Hist. Acad. Sci. Berlin (1747) 1749, 214–249.Google Scholar
  52. 46.
    Leonhardi Euleri Opera omnia, ser. II, vol. X, ed. F. Stüssi & H. Favre, 1947.Google Scholar
  53. 47.
    Leonhardi Euleri Opera omnia, ser. I, vol. XVI–I, ed. C. Boehm, 1933.Google Scholar
  54. 48.
    D. Bernoulli, De indole singulari serierum infinitarum quas sinus vel cosinus angularum arithmetice progredientium formant, earumque summatione et usu. Nov. Comm. Ac. Petrop., XVII (1772) 1773, 3–23.Google Scholar
  55. 49.
    Leonhard Euler und Christian Goldbach. Briefwechsel 1729–1764, hsg. von A. P. Juškevič & E. Winter. Berlin, 1965.Google Scholar
  56. 50.
    Leonhardi Euleri Opera omnia, ser. I, vol. X, ed. G. Kowalewski, 1913.Google Scholar
  57. 51.
    C. Truesdell, The Rational Mechanics of Flexible or Elastic Bodies. 1638–1788. In: Leonhardi Euleri Opera omnia, ser. II, vol. II-2. Turici 1960.Google Scholar
  58. 52.
    Leonhardi Euleri Opera omnia, ser. I, vol. XXIII, ed. H. Dulac, 1938.Google Scholar
  59. 53.
    И. Ю. Tимħcy;eнкo, Ocнoвaния тeopии aнaлитиħcy;ecких фyнкций, ħcy;. I, т. I. Oдecca, 1899.Google Scholar
  60. 54.
    C. MacLaurin, A Treatise of Fluxions, vol. I–II. Edinburgh, 1742.Google Scholar
  61. 55.
    Leonhardi Euleri Opera omnia, ser. I, vol. XIII, ed. F. Engel et L. Schlesinger, 1914.Google Scholar
  62. 56.
    A. P. Youschkevitch, Euler und Lagrange über die Grundlagen der Analysis. — Sammelband ... zu Ehren des 250. Geburtstages Leonard Eulers ..., ed. K. Schröder. Berlin, 1959, 224–244.Google Scholar
  63. 57.
    J.d'Alembert, Opuscules mathématiques, vol. VIII. Paris, 1780, 302–308. See also See also A. П. Юшкeвиħcy;, К иcтopии cпopa o кoлeблющeйcя cтpyнe (Дaлaмбep o пpимeнeнии “paзpывых” фyнкций). Иcтopикo-мaтeмaтиħcy;ecкнe иccлeдoвaния, XX, 1975, 221–231.Google Scholar
  64. 58.
    L. Arbogast, Mémoire sur la nature des fonctions arbitraires qui entrent dans les intégrales des équations aux différentielles partielles. St. Pétersbourg, 1791.Google Scholar
  65. 59.
    Leonhardi Euleri Opera omnia, ser. I, vol. XI, ed. F. Engel & L. Schlesinger, 1913.Google Scholar
  66. 60.
    J. Charles, Fragment sur les fonctions discontinues. Mémoires de mathématiques et de physique présentés par divers savants. Paris, 1785, 585–588.Google Scholar
  67. 61.
    A. L. Cauchy, Oeuvres complètes, I sér., vol. VIII, 145–160.Google Scholar
  68. 62.
    I. Grattan-Guinness in collaboration with J. R. Ravetz, Joseph Fourier. 1768–1830. Cambridge, Mass.-London, 1972.Google Scholar
  69. 63.
    J. B. Fourier, Oeuvres, v. I, publié par G. Darboux. Paris, 1888.Google Scholar
  70. 64.
    A. L. Cauchy, Oeuvres complètes, 2 sér., vol. III, Paris, 1897.Google Scholar
  71. 65.
    A. L. Cauchy, Oeuvres complètes, 2 sér., vol. IV. Paris, 1899.Google Scholar
  72. 66.
    P. G. Lejeune-Dirichlet, Gesammelte Werke, Bd. I. Berlin, 1889 (Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données (1829), 117–132; Über die Darstellung ganz willkürlicher Funktionen durch Sinus- und Cosinusreihen (1837), 133–160.Google Scholar
  73. 67.
    A. P. Youschkevitch, La notion de fonction chez Condorcet. In: For Dirk Struik. Ed. by R. S. Cohen, J. J. Stachel & M. W. Wartofsky. Dordrecht-Holland, Boston-U.S.A., 1974, 131–139.Google Scholar
  74. 68.
    J. L. Lagrange, Oeuvres, t. III, Paris, 1869, 441–476.Google Scholar
  75. 69.
    S. F. Lacroix, Traité du calcul différentiel et du calcul intégral, t. I, Paris, 1797; 2e éd., Paris, 1810.Google Scholar
  76. 70.
    M. Klein, Mathematical Thought from Ancient to Modern Times. New York, 1972.Google Scholar
  77. 71.
    Ф. A. Meдвeдeв, Oб oпpeдeлeнии пoнятия фyнкции y Лoбaħcy;eвcкoгo и Днpихлe. Иcтopикo-мaтeмaтиħcy;ecкиe иccлeдoвaния, XX, 1975, 232–245.Google Scholar
  78. 72.
    H. И. Лoбaħcy;eвcкий, Пoлнoe coбpaниe coħcy;инeний, т. У. Mocквa-Лeнингpaд, 1951.Google Scholar
  79. 73.
    J. L. Lagrange, Oeuvres, t. X. Paris, 1884.Google Scholar
  80. 74.
    B. Я. Бyнякoвcкий, Лeкcнкoн ħcy;иcтoй и пpиклaднoй мaтeмaтики, т. I. Caпкт-Пeтepбypг, 1839.Google Scholar
  81. 75.
    G. G. Stokes, On the critical values of the sums of periodic series, 1848. In: Mathematical and Physical Papers, v. I. Cambridge, 1880.Google Scholar
  82. 76.
    H. Burkhardt, Trigonometrische Reihen und Integrale. 28. Exkurs betreffend die Entwicklung des Begriffs einer willkürlichen Funktion. Encyklopädie der mathematischen Wissenschaften, Bd. II, T. I, 2 Hälfte. Leipzig 1904–1916, 958–971.Google Scholar
  83. 77.
    A. Church, Introduction to Mathematical Logic, v. 1–2. Princeton, 1952–1956.Google Scholar
  84. 78.
    A. Ostrowski, Vorlesungen über Differential- und Integralrechnung, Bd. I. Basel und Stuttgart, 1965.Google Scholar
  85. 79.
    U. Dini, Grundlagen für eine Theorie der Funktionen einer veränderlichen reellen Größe. Deutsch. bearb. von G. Lüroth und A. Schepp, Leipzig, 1892.Google Scholar
  86. 80.
    H. H. Лyзин, Интeгpaл и тpигoнoмeтpиħcy;ecкий pяд. Peдaкция и кoммeнтapии H. К. Бapи и Д. E. Meньщoвa. Cтaтьи H. К. Бapи, B. B. Гoлyбeвa и Л. A. Люcтepникa. Mocквa-Лeнингpaд, 1951.Google Scholar
  87. 81.
    H. Weyl, Philosophie der Mathematik und Naturwissenschaft. München-Berlin, 1927.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • A. P. Youschkevitch
    • 1
  1. 1.Institute for History of Science and TechnologyMoscow

Personalised recommendations