Marine Biology

, Volume 9, Issue 2, pp 99–108

Importance of wax esters and other lipids in the marine food chain: Phytoplankton and copepods

  • R. F. Lee
  • J. C. Nevenzel
  • G. -A. Paffenhöfer


Wax esters, which function as reserve fuels, account for 25 to 40% of the lipid of the pelagic copepod Calanus helgolandicus (Copepoda, Calanoida). In laboratory experiments with these crustaceans, diatoms (Lauderia borealis, Chaetoceros curvisetus, and Skeletonema costatum) and dinoflagellates (Gymnodinium splendens), which contained no wax esters, were used as food. Changes in the food concentration affected both the amount of lipid and the composition of the wax esters. Since the fatty acids of the triglycerides and wax esters of C. helgolandicus resembled the dietary fatty acid composition, it appeared that copepods incorporated their dietary fatty acids largely unchanged into their wax esters. The polyunsaturated alcohols of the wax esters did not correspond in carbon numbers or degrees of unsaturation to the dietary fatty acids. We postulate two different metabolic pools to explain the origin of these long chain alcohols. The phospholipid fatty acids were not affected by changes in the amount or type of food, probably because of their structural function.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ackman, R.G., P.M. Jangaard, R.J. Hoyle and H. Brockerhoff: Origin of marine fatty acids. I. Analysis of the fatty acids produced by the diatom Skeletonema costatum. J. Fish. Res. Bd Can. 21, 747–756 (1964).Google Scholar
  2. — and C. S. Tocher: Marine phytoplankter fatty acids. J. Fish. Res. Bd Can. 25, 1603–1620 (1968).Google Scholar
  3. Allen, C. F., P. Good, H. F. Davis, P. Chisum, S. D. Fowler: Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J. Am. Cil Chem. Soc. 43, 223–231 (1966).Google Scholar
  4. Anraku, M. and M. Omori: Preliminary survey of the relationship between the feeding habits and structure of the mouth parts of marine copepods. Limnol. Oceanogr. 8, 116–126 (1963).Google Scholar
  5. Barraclough, W. E., R. J. Lebrasseur and O. D. Kennedy: Shallow scattering layer in the subarctic Pacific Ocean: detection by high-frequency echo sounder. Science, N.Y. 166, 611–612 (1969).Google Scholar
  6. Benson, A. A.: On the orientation of lipids in chloroplast and cell membranes. J. Am. Oil Chem. Soc. 43, 265–270 (1966).Google Scholar
  7. Bergmann, W.: Sterols: their structure and distribution. In: Comparative biochemistry, a comprehensive treatise, pp 133–134. Ed. by H. S. Mason. New York: Academic Press 1962.Google Scholar
  8. Blumer, M., M. M. Mullin and D. W. Thomas: Pristane in zooplankton. Science, N.Y. 140, 974 (1963).Google Scholar
  9. Brockerhoff, H., R. G. Ackman and R. J. Hoyle: Specific distribution of fatty acids in marine lipids. Archs Biochem. Biophys. 100, 9–12 (1963).Google Scholar
  10. Carroll, K. K.: Dietary fat and fatty acid composition of tissue lipids. J. Am. Oil Chem. Soc. 42, 516–552 (1965).Google Scholar
  11. Chuecas, L. and J. P. Riley: Component fatty acids of the total lipids of some marine phytoplankton. J. mar. Biol. Ass. U.K. 49, 97–116 (1969).Google Scholar
  12. Corner, E. D. S. and C. B. Cowey: Biochemical studies on the production of marine zooplankton. Biol. Rev. 43, 393–426 (1968).Google Scholar
  13. Culkin, F. and R. J. Morris: The fatty acids of some marine crustaceans. Deep Sea Res. 16, 109–116 (1969).Google Scholar
  14. Emergy, A. E. and J. R. Gear: Long-chain esters in clover wax. Can. J. Biochem. 47, 1195–1196 (1969).Google Scholar
  15. Eppley, R. W., R. W. Holmes and J. D. H. Strickland: Sinking rates of marine phytoplankton measured with a fluorometer. J. exp. mar. Biol. Ecol. 1, 191–208 (1967).Google Scholar
  16. Fagerlund, U. H. M.: Marine sterols. X. The sterol content of the plankton Euphausia pacifica. Can. J. Biochem. Physiol. 40, 1839–1840 (1962).Google Scholar
  17. Farkas, T. and S. Herodek: The effect of environmental temperature on the fatty acid composition of crustacean plankton. J. Lipid. Res. 5, 369–373 (1964).Google Scholar
  18. Fogg, G. E.: Algal cultures and phytoplankton ecology, 126pp. Madison: University of Wisconsin Press 1965.Google Scholar
  19. Hansen, I. A. and C. C. Cheah: Related dietary and tissue lipids of the sperm whale. Comp. Biochem. Physiol. 31, 757–761 (1969).Google Scholar
  20. Harrington, G. W., D. H. Beach, J. E. Dunham and G. G. Holz: The polyunsaturated fatty acids of marine dinoflagellates. J. Protozool. 17, 213–219 (1970).Google Scholar
  21. Hashimoto, S., S. Dayton and J. C. Roberts: Aliphatic wax alcohols and other lipids in atheromata and arterial tissues of cetaceans. Comp. Biochem. Physiol. 20, 975–986 (1967).Google Scholar
  22. Hopkins, T. L.: Zooplankton standing crop in the arctic basin. Limnol. Oceanogr. 14, 80–85 (1969).Google Scholar
  23. Iyengar, R. and H. Schlenk: Wax esters of mullet (Mugil cephalus) roe oil. Biochemistry, N.Y. 6, 396–402 (1967).Google Scholar
  24. Jezyk, P. F. and A. J. Penicnak: Fatty acid relationships in an aquatic food chain. Lipids 1, 427–429 (1966).Google Scholar
  25. Kates, M. and B. E. Volcani: Lipid components of diatoms. Biochim. biophys. Acta 116, 264–278 (1966).Google Scholar
  26. Kayama, M., Y. Tsuchiya and J. F. Mead: A model experiment of aquatic food chain with special significance in fatty acid conversion. Nippon Suisan Gakk. (Bull. Japan. Soc. scient. Fish.) 29, 452–458 (1963a).Google Scholar
  27. — and J. F. Mead: Incorpor of linolenic-1-14C acid into eicosapentaenoic and docosahexaenoic acids in fish. J. Am. Oil Chem. Soc. 40, 499–502 (1963b).Google Scholar
  28. Keenan, T. W. and D. J. Morre: Phospholipid class and fatty acid composition of golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry, N.Y. 9, 19–25 (1969).Google Scholar
  29. Kolattukudy, P. E.: Plant waxes. Lipids 5, 259–275 (1970).Google Scholar
  30. Lasker, R. and G. H. Theilacker: The fatty acid composition of the lipids of some Pacific sardine tissues in relation to ovarian maturation and diet. J. Lipid Res. 3, 60–64 (1962).Google Scholar
  31. Lee, R. F. and A. R. Loeblich III: Distribution of 21:6 hydrocarbon and its relationship to 22:6 fatty acid in algae. Phytochemistry (1970). (In press).Google Scholar
  32. — J. C. Nevenzel and G. A. Paffenhöfer: Wax esters in marine copepods. Science, N.Y. 167, 1510–1511 (1970a).Google Scholar
  33. —: The metabolism of wax esters and other lipids marine copepod, Calanus helgolandicus. J. Lipid Res. 11, 237–240 (1970b).Google Scholar
  34. —, A. A. Benson, S. Patton and T. Kavanagh: A unique hexaene hydrocarbon from a diatom. Biochim. biophys. Acta 202, 386–388 (1970c).Google Scholar
  35. Littlepage, J. L.: Seasonal variation in lipid content of two antarctic marine Crustacea. Actual. scient. ind. 1312, 463–470 (1964).Google Scholar
  36. Lovern, J. A.: Fat metabolism in fishes. VI. The fats of some plankton Crustacea. Biochem. J. 29, 847–849 (1935).Google Scholar
  37. Low, E. M.: Studies on some chemical constituents of diatoms. J. mar. Res. 14, 199–204 (1955).Google Scholar
  38. Marshall, S. M. and A. P. Orr: The biology of a marine copepod, 188 pp. Edinburgh: Oliver and Boyd 1955.Google Scholar
  39. —: Food and feeding in copepods. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 153, 92–98 (1962).Google Scholar
  40. Metcalfe, L. D. and A. A. Schmitz: The rapid preparation of fatty acid esters for gas chromatographic analysis Analyt. Chem. 33, 363–364 (1961).Google Scholar
  41. Mullin, M. M.: Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 8, 239–250 (1963).Google Scholar
  42. —: Production of zooplankton in the ocean: The present status and problems. Oceanogr. mar. Biol. Rev. 7, 293–314 (1969).Google Scholar
  43. — and E. R. Brooks: Laboratory culture, growth rate, and feeding behavior of a planktonic marine copepod. Limnol. Oceanogr. 12, 657–666 (1967).Google Scholar
  44. Nevenzel, J. C.: Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids 5, 308–319 (1970).Google Scholar
  45. — and J. F. Mead: The lipids of Ruvettus pretiosus muscle and liver. Biochemistry N.Y. 4, 1589–1594 (1965).Google Scholar
  46. Nicolaides, N.: The monoene and the other wax alcohols of human skin surface lipid and their relation to the fatty acids of the lipid. Lipids 2, 266–275 (1967).Google Scholar
  47. Nishimura, S.: The zoogeographical aspects of the Japan Sea. Publs Seto mar. biol. Lab. 17, 67–142 (1969).Google Scholar
  48. Otsuka, H.: Changes of lipid and carbohydrate contents in Chlorella cells during the sulfur starvation as studied by the technique of synchronous culture. J. gen. appl. Microbiol., Tokyo 7, 72–77 (1961).Google Scholar
  49. — and Y. Morimura: Changes of fatty acid composition of Chlorella ellipsoidea during its cycle. Pl. Cell Physiol., Tokyo 7, 663–670 (1966).Google Scholar
  50. Paffenhöfer, G.-A.: Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer wiss. Meeresunters. 20, 346–359 (1970).Google Scholar
  51. Raymont, J. E. G.: Plankton and productivity in the oceans 660 pp. London: Pergamon Press 1963.Google Scholar
  52. — and E. Linford: Biochemical studies on marine zooplankton. I. The biochemical composition of Neomysis integer. J. Cons. perm. int. Explor. Mer 26, 354–363 (1964).Google Scholar
  53. — and R. J. Conover: Further investigations of the carbohydrate content of marine zooplankton. Limnol. Oceanogr. 6, 154–164 (1961).Google Scholar
  54. — and E. Linford: A note on the biochemical composition of some Mediterranean zooplankton. Int. Revue ges. Hydrobiol. 51, 485–488 (1966).Google Scholar
  55. — and J. K. B. Raymont: Biochemical studies on marine zooplankton VI. Investigations of Meganyctiphanes norvegica (M. Sars). Deep Sea Res. 16, 141–156 (1969).Google Scholar
  56. Richman, S. and J. N. Rogers: The feeding of Calanus helgolandicus on synchronously growing populations of the marine diatom Ditylum brightwellii. Limnol. Oceanogr. 14, 701–709 (1969).Google Scholar
  57. Sand, D. M. and H. Schlenk: The polyunsaturated alcohols in wax esters of fish roe. Lipids 4, 303–304 (1969).Google Scholar
  58. Sansone, G. and J. G. Hamilton: Glyceryl ether, wax ester and triglyceride composition of the mouse preputial gland. Lipids 4, 435–440 (1969).Google Scholar
  59. Strickland, J. D. H.: A comparison of profiles of nutrient and chlorophyll concentrations taken from discrete depths and by continuous recording. Limnol. Oceanogr. 13, 388–391 (1968).Google Scholar
  60. Tulloch, A. P.: The composition of beeswax and other waxes secreted by insects. Lipids 5, 247–258 (1970).Google Scholar
  61. Wolfe, D. A., P. V. Rao and D. G. Cornwell: The fatty acid composition of crayfish lipids. J. Am. Oil Chem. Soc. 42, 633–637 (1965).Google Scholar
  62. Wood, R. and F. Synder: Gas-lipid chromatographic analysis of long chain isomeric glyceryl monoethers. Lipids 1, 62–72 (1966).Google Scholar
  63. Yamada, M.: The lipid of plankton. Nippon suisan Gakk. (Bull. Japan. Soc. scient. Fish.) (Engl. summ.) 30, 673–681, 698–699 (1964).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • R. F. Lee
    • 1
  • J. C. Nevenzel
    • 1
  • G. -A. Paffenhöfer
    • 1
  1. 1.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Biologische Anstalt Helgoland (Zentrale)2 Hamburg 50Germany (FRG)

Personalised recommendations