Archive for History of Exact Sciences

, Volume 29, Issue 2, pp 131–149 | Cite as

The lemniscate and Fagnano's contributions to elliptic integrals

  • Raymond Ayoub


Elliptic Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Fagnano, Collected Works, Especially vol. 2, papers XXXII, XXXIII and XXXIV.Google Scholar
  2. 2.
    John Bernoulli, Collected Works, vol. 3, lecture 34 of item CXLIX.Google Scholar
  3. 3.
    C. L. Siegel, Collected Works, vol. 3, pp. 249–251. See also Sammelband Leonhard Euler, Akademie Verlag Berlin 1959.Google Scholar
  4. 4.
    James Bernoulli, Collected works, vol. 1, 576–600.Google Scholar
  5. 5.
    L. Euler, Collected works, series 2, vol. 10, pp. 1–17.Google Scholar
  6. 6.
    C. Truesdell, The Rational Mechanics of Flexible or Elastic Bodies, 1687–1788, Published as part of the Collected works of Euler, series 2, vol. XI, part 2.Google Scholar
  7. 7.
    A. Weil, Essais Historiques sur la théorie des nombres. Lectures 1 and 2. Monographie # 22 de l'Enseignement Mathématique.Google Scholar
  8. 8.
    James Bernoulli, Collected works, vol. 2, pp. 999–1001.Google Scholar
  9. 9.
    L. Euler, Collected works, series 1, vol. 20, pp. 80–107.Google Scholar
  10. 10.
    L. Kiepert, Journal für die reine and Angewandte Mathematik, vol. 75, pp. 255–263.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1984

Authors and Affiliations

  • Raymond Ayoub
    • 1
  1. 1.The Pennsylvania State UniversityUniversity Park

Personalised recommendations