, Volume 40, Issue 2, pp 125–132 | Cite as

Flight polymorphism in the field cricket Gryllus pennsylvanicus

  • R. G. Harrison


Wing length polymorphisms are common in many groups of insects. In the field cricket Gryllus pennsylvanicus the long-winged morph occurs in low frequency in most populations but seems not to occur at all in certain areas and to become relatively abundant in others. Laboratory rearing experiments and single-pair crosses suggest that both inter-and intrapopulation variation can be explained at least in part by genetic differences. A model of genetic variation in threshold response is consistent with all available data. One possible mechanism for maintenance of the flight polymorphism is discussed.


Genetic Variation Length Polymorphism Genetic Difference Wing Length Threshold Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.D.: Life cycle origins, speciation, and related phenomena in crickets. Quart. Rev. Biol. 43, 1–41 (1968)Google Scholar
  2. Andrewartha, H.G., Birch, L.C.: The Distribution and Abundance of Animals. Chicago: University of Chicago Press 1954Google Scholar
  3. Brinkhurst, R.O.: Alary polymorphism in the Gerroidea (Hemiptera-Heteroptera). J. Anim. Ecol. 28, 211–230 (1959)Google Scholar
  4. Byers, G.W.: Evolution of wing reduction in crane flies (Diptera: Tipulidae). Evol. 23 346–354 (1969)Google Scholar
  5. Cantrall, I.J.: The ecology of the Orthoptera and Dermaptera of the George Reserve, Michigan. Univ. Mich. Mus. Zool. Misc. Publ. 54, 1–182 (1943)Google Scholar
  6. Ekblom, T.: Untersuchungen über der Flugopolymorphism der Gerris asper. Notul. Ent. Helsingf. 29, 1–15 (1941)Google Scholar
  7. Fuzeau-Braesch, S.: Variations dans la longeur des ailes en fonction de l'effet de groupes chez quelques especes de Gryllides. Bull. Soc. Zool. Fr. 86, 785–788 (1961)Google Scholar
  8. Ghouri, A.S.K., McFarlane, J.E.: Occurrence of a macropterous form of Gryllodes sigillatus (Walker) (Orthoptera: Gryllidae) in laboratory culture. Can. J. Zool. 36, 837–838 (1958)Google Scholar
  9. Harrison, R.G.: Patterns of variation and genetic differentiation in closely related species: the field crickets of eastern North America. Ph.D. Thesis, Cornell University (1977)Google Scholar
  10. Jackson, D.J.: The inheritance of long and short wings in the weevil (Sitona hispidula) with a discussion of wing reduction among beetles. Trans. Roy. Soc. Edinburgh 55, 665–735 (1928)Google Scholar
  11. Jackson, D.J.: Observations on the capacity for flight of water beetles. Proc. Roy. Ent. Soc. A 27, 57–70 (1952)Google Scholar
  12. Lees, A.D.: The control of polymorphism in aphids. Adv. Ins. Phys. 3, 207–277 (1966)Google Scholar
  13. Lees, A.D.: The production of the apterous and alate forms in the aphid Megoura viciae Buckton with special reference to the role of crowding. J. Ins. Phys. 13, 289–318 (1967)Google Scholar
  14. Lindroth, C.H.: Inheritance of wing dimorphism in Pterostichus anthracinus III. Hereditas 32, 37–40 (1946)Google Scholar
  15. Lutz, F.E.: The variation and correlations of certain taxonomic characters of Gryllus. Carnegie Inst. Wash. Publ. No. 101, 3–63 (1908)Google Scholar
  16. Masaki, S., Oyama N.: Photoperiodic control of growth and wing form in Nemobius yezoensis Shiraki. Kontyu 31, 16–26 (1963)Google Scholar
  17. Mathad, S.B., McFarlane, J.E.: Two effects of photoperiod on wing development in Gryllodes sigillatus (Walk.). Can. J. Zool. 46, 57–60Google Scholar
  18. McFarlane, J.E.: Effect of diet and temperature on wing development of Gryllodes sigillatus (Walk.) (Orthoptera: Gryllidae). Ann. Soc. Ent. Quebec 7, 28–33 (1962)Google Scholar
  19. Piers, H.: The Orthoptera (cockroaches, locusts, grasshoppers and crickets) of Nova Scotia. Trans. Nova Scotia Inst. Sci. 14, 201–356 (1918)Google Scholar
  20. Poisson, R.: Contribution a l'etude des Hemipteres aquatiques. Bull. Biol. 58, 49–305 (1924)Google Scholar
  21. Saeki, H.: The effect of population density on the occurrence of the macropterous form in a cricket, Scapsipedus aspersus Walker (Orthoptera: Gryllidae). Jap. J. Ecol. 16, 1–4 (1966) (in Japanese, English abstract)Google Scholar
  22. Saeki, H.: The effect of day-lenght on the occurrence of the macropterous form in a cricket, Scapsipedus aspersus Walker (Orthoptera: Gryllidae). Jap. J. Ecol. 16, 49–52 (1966) (in Japanese, English abstract)Google Scholar
  23. Sellier, R.: Recherches sur la morphogenese et le polymorphisme alaires chez les Orthopteres Gryllides. Ann. Sci. Nat., 11th Ser. 16, 595–740 (1954)Google Scholar
  24. Southwood, T.R.E.: A hormonal theory of the mechanism of wing polymorphism in Heteroptera. Proc. Roy. Ent. Soc. Lond. A 36, 63–66 (1961)Google Scholar
  25. Southwood, T.R.E.: Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 37, 171–214 (1962)Google Scholar
  26. Tanaka, S.: Wing polymorphism, egg production and adult longevity in Pteronemobius taprobanenis Walker (Orthoptera: Gryllidae). Kontyu 44, 327–33 (1976)Google Scholar
  27. Tanaka, S., Matsuka, M., Sakai, T.: Effect of change in photoperiod on wing form in Pteronemobius taprobanensis Walker (Orthoptera:Gryllidae). Appl. Ent. Zool. 11, 27–32 (1976)Google Scholar
  28. Vepsalainen, K.: Determination of wing length and diapause in water striders (Gerris Fabr., Heteroptera). Hereditas 77, 163–177 (1974)Google Scholar
  29. Walker, E.M.: The crickets of Ontario. Can. Ent. 36, 249–255 (1904)Google Scholar
  30. Young, E.C.: Flight muscle polymorphism in British Corixidae: ecological observations. J. Anim. Ecol. 34, 353–389 (1965)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. G. Harrison
    • 1
  1. 1.Department of BiologyYale University New HavenUSA

Personalised recommendations