Oecologia

, Volume 49, Issue 3, pp 316–321 | Cite as

The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity

  • Walter Geller
  • Helga Müller

Summary

The filtering apparatus of eleven Cladoceran species was studied. The distances between the setulae, which act as filters, were measured. Among adult individuals, they vary from 0.2 μm in Diaphanosoma brachyurum to 4.7 μm in Sida crystallina. Species can be grouped according to the mesh-sizes, as “fine mesh filter-feeders”: Diaphanosoma brachyurum, Ceriodaphnia quadrangula, Chydorus sphaericus, Daphnia cucullata and Daphnia magna; “medium mesh filter-feeders”: Daphnia galeata, D. hyalina. D. pulicaria, Bosmina coregoni, and “coarse mesh filter-feeders”: Holopedium gibberum and Sida crystallina. In Daphnia hyalina, the distances between setulae increase from 0.3–0.4 μm in small juveniles, to 0.8–2.0 μm in adults. In Daphnia magna, the mesh-size of the filter does not increase significantly with growth. There is good evidence that the relative abundance of the filter-feeding types varies with the trophic state of the lake. In oligotrophic lakes the “coarse mesh filter-feeders” usually dominate throughout the year. The seasonal succession of zooplankton species in eutrophic lakes can be interpreted as a succession of feeding types; during winter “coarse mesh filter-feeders” dominate, while “fine mesh filter-feeders” are most abundant during summer phytoplankton blooms. Our results support the hypothesis that the species composition of filter-feeding zooplankton is strongly influenced by the amount of suspended bacteria which are available as food only for filter-feeding species with fine meshes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burns D (1968) The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol Oceanogr 13:675–678Google Scholar
  2. Cannon HG, Leak F (1933) On the feeding mechanism of the Branchiopoda. Philos Trans R Soc Lond Ser B 222:267–352Google Scholar
  3. Coker JH, Hayes WJ (1940) Biological observations in Mountain Lake, Virginia. Ecology 21:192–198Google Scholar
  4. Davis ChC (1966) Plankton studies in the largest great lakes of the world. Great Lakes Res Div, Univ Michigan Pub No 14:1–36Google Scholar
  5. Fenchel T (1980) Suspension feeding in ciliated protozoa: structure and function of feeding organelles. Arch Protistenk 123:239–260Google Scholar
  6. Fenchel T (1980) Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25:733–738Google Scholar
  7. Flössner D (1972) Krebstiere, Crustacea: Kiemen- und Blattfüßer, Branchiopoda, Fischläuse, Branchiura. In: M Dahl and F Peus (eds), Die Tierwelt Deutschlands, 60. Teil, JenaGoogle Scholar
  8. Franke H (1925) Der Fangapparat von Chydorus sphaericus. Z wiss Zool 125:271–298Google Scholar
  9. Geller W (1975) Die Nahrungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergröße und dem Hungerzustand der Tiere. Arch Hydrobiol/Suppl 48:47–107Google Scholar
  10. Geller W (1980) Stabile Zeitmuster in der Planktonsuccession des Bodensees (Überlinger See). Verh Ges Ökol 8:373–382Google Scholar
  11. Gliwicz ZM (1969) The share of algae, bacteria, and trypton in the food of the pelagic zooplankton of lakes with various trophic characteristics. Bull Acad Pol Sci 17:159–165Google Scholar
  12. Gliwicz ZM (1977) Food size selection and seasonal succession of filter-feeding zooplankton in an eutrophic lake. Ekol Pol 25:179–225Google Scholar
  13. Gliwicz ZM (1980) Food and predation as factors limiting clutch size in cladocerans. Int Ver Theor Angew Limnol Verh 21 (in press)Google Scholar
  14. Godlewska-Lipowa WA (1975) Ecosystem of the Mikolajskie lake. The role of heterotrophic bacteria in the pelagial. Pol Arch Hydrobiol 22:79–87Google Scholar
  15. Godlewska-Lipowa WA (1976) Bacteria as indicators of the degree of eutrophication and degradation of lakes. Pol Arch Hydrobiol 23:341–356Google Scholar
  16. Gophen M (1977) Feeding of Daphnia on Chlamydomonas and Chlorobium. Nature 265:271–273Google Scholar
  17. Gophen M, Cavari BZ, Berman T (1974) Zooplankton feeding of differentially labeled algae and bacteria. Nature 247:393–394Google Scholar
  18. Graf H (1930) Der Fangapparat von Bosmina. Z Morphol Oecol Tiere 19:381–396Google Scholar
  19. Haney JF, Hall DJ (1972) Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 18:331–332Google Scholar
  20. Hutchinson GE (1967) A treatise on limnology, Vol II. New YorkGoogle Scholar
  21. Korinek V, Machacek J (1980) Filtering structures of Cladocera and their ecological significance I. Daphnia pulicaria. Vest cs Spolec zool 44:213–218Google Scholar
  22. Korinek V, Krepelova B, Machacek J (1980) Ecological significance of filtering structures in Cladocera. II. Species of the genera Daphnia and Ceriodaphnia. Int Ver Theor Angew Limnol Verh 21 (in press)Google Scholar
  23. Kozhov M (1963) Lake Baikal and its life. Monogr biol 11, The HagueGoogle Scholar
  24. Krambeck C (1978) Changes in planktonic microbial populations —an analysis by scanning electron microscopy. Int Ver Theor Angew Limnol Verh 20:2255–2259Google Scholar
  25. Lampert W (1978) A field study on the dependence of the fecundity of Daphnia spec. on food concentration. Oecologia (Berl) 36:363–369Google Scholar
  26. McMahon JW, Rigler FM (1965) Feeding rate of Daphnia magna Straus in different foods labeled with radioactive phosphorus. Limnol Oceanogr 10:105–113Google Scholar
  27. Nauwerck A (1963) Die Beziehung zwischen Zooplankton und Phytoplankton im See Erken. Symb Bot Uppsal 17:1–163Google Scholar
  28. Neill WE (1975) Resource partitioning by competing microcrustaceans in stable laboratory microecosystems. Int Ver Theor Angew Limnol Verh 19:2885–2890Google Scholar
  29. Nival P, Nival S (1976) Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects on grazing. Limnol Oceanogr 21:24–38Google Scholar
  30. Paerl HW, Shimp SL (1973) Preparation of filtered plankton and detritus for study with scanning electron microscopy. Limnol Oceanogr 18:802–805Google Scholar
  31. Patalas K (1972) Crustacean plankton and the eutrophication of St. Lawrence Great Lakes. J Fish Res Bd Canada 29:1451–1462Google Scholar
  32. Peijler B (1965) Regional-ecological studies of Swedish fresh-water zooplankton. Zool Bidr Upps 36:407–515Google Scholar
  33. Peterson BJ, Hobbie JE, Haney JF (1978) Daphnia grazing on natural bacteria. Limnol Oceanogr 23:1039–1044Google Scholar
  34. Psenner R (1976) Bakterien im Piburger See. Diss InnsbruckGoogle Scholar
  35. Rigler FH (1961) The relation between concentration of food and feeding rate of Daphnia magna Straus. Can J Zool 39:857–868Google Scholar
  36. Rubenstein DI, Koehl MA (1977) The mechanisms of filter feeding: some theoretical considerations. Amer Natural 111:981–994Google Scholar
  37. Salimovskaya-Rodina AG (1940) Bacteria and yeasts as food for Cladocera (Daphnia magna). Compt Rend Acad Sci URSS 29:248–252Google Scholar
  38. Simon M (1980) Umwandlungen des Sestons während des Sinkprozesses im Herbst im Bodensee-Überlinger See. Diplom FreiburgGoogle Scholar
  39. Smyly W, Collins VG (1975) The influence of microbial food sources and aeration on the growth of Ceriodaphnia quadrangula under experimental conditions. Freshwater Biol 5:251–256Google Scholar
  40. Sorokin YI, Paveljeva EB (1978) On structure and functioning of ecosystem in a salmon lake. Hydrobiologia 57:25–48Google Scholar
  41. Stankovic S (1960) The Balkan Lake Ohrid and its living world. Monogr biol 9, The HagueGoogle Scholar
  42. Storch O (1922) Der Fangapparat der Daphniden für Nannoplankton. Verh Dtsch Zool Ges 27:61–63Google Scholar
  43. Storch O (1924) Morphologie und Physiologie des Fangapparates der Daphniden. Ergebn Fortschr Zool 6:125–233Google Scholar
  44. Straskrabova V, Komarkova J (1979) Seasonal changes in bacterioplankton in a reservoir related to algae. I. Number and biomass. Int Rev Hydrobiol 64:285–302Google Scholar
  45. Straskrabova V, Sorokin YI (1972) Determination of cell size of micro-organisms for the calculation of biomass. In: YI Sorokin and H Kadota (eds), Techniques for the assessment of microbial production and decomposition in fresh waters. IBP Handbook 23 OxfordGoogle Scholar
  46. Tezuka Y (1971) Feeding rate of Daphnia on planktonic bacteria. Jap J Ecol 21:127–134Google Scholar
  47. Winberg GG (1972) Some results of Soviet IBP investigations on lakes. In: Z Kajak and A Hillbricht-Ilkowska (eds), Productivity problems of freshwaters KrakowGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Walter Geller
    • 1
  • Helga Müller
    • 1
  1. 1.Limnologisches InstitutUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations