Advertisement

Oecologia

, Volume 45, Issue 1, pp 1–2 | Cite as

Vole population cycles: A case for kin-selection?

  • E. L. Charnov
  • J. P. Finerty
Article

Summary

Kin-selection, as evidenced by aggression between individuals with a low coefficient of relation, may be a significant contributing factor in vole population cycles. Demographic and behavioral studies support this idea.

Keywords

Contribute Factor Behavioral Study Population Cycle Vole Population Significant Contribute Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chitty, D.: Mortality among voles (Microtus agrestis) at Lake Vyrnwy, Montgomeryshire in 1936–39. Phil. Trans. R. Soc. Ser. B. 236 505–552 (1952)Google Scholar
  2. Chitty, D.: Self-regulation of numbers through changes in viability. Cold Spring Harb. Symp. Quant. Biol. 22, 277–280 (1957)Google Scholar
  3. Chitty, D.: Population processes in the vole and their relevance to general theory. Can. J. Zool. 38, 99–113 (1960)Google Scholar
  4. Chitty, D.: The natural selection of self-regulatory behavior in animal populations. Proc. Ecol. Soc. Australia 2, 51–78 (1967)Google Scholar
  5. Christian, J.J.: Fighting, maturity, and population density in Microtus pennsylvanicus. J. Mammal. 52, 556–567 (1971)Google Scholar
  6. Finerty, J.P.: The population ecology of cycles in small mammals: Mathematical theory and biological fact. (in press: Yale University Press, New Haven (Connecticut) 1980)Google Scholar
  7. Garten, C.T., Jr.: Relationships between aggressive behavior and genic heterozygosity in the oldfield mouse, Peromyscus polionotus. Evolution 30, 59–72 (1976)Google Scholar
  8. Hamilton, W.D.: The genetical evolution of social behavior. J. Theor. Biol. 12, 1–52 (1964)Google Scholar
  9. Hamilton, W.D.: Selection of selfish and altruistic behavior in some extreme models. In: Man and beast: Comparative social behavior (J.F. Eisenberg, W.S. Dillon, eds.), pp. 57–91. Washington: Smithsonial Institution Press 1971Google Scholar
  10. Hamilton, W.D.: Altruism and related phenomena. Ann. Rev. Ecol. and Systematics 3, 193–232 (1972)Google Scholar
  11. Krebs, C.J., Keller, B.L., Tamarin, R.H.: Microtus population biology: demographic changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in southern Indiana. Ecology 50, 587–607 (1969)Google Scholar
  12. Krebs, C.J., Gaines, M.S., Keller, B.L., Myers, J.H., Tamarin, R.H.: Population cycles in small rodents. Science 179, 34–41 (1973)Google Scholar
  13. Krebs, C.J., Myers, J.H.: Population cycles in small mammals. Adv. Ecol. Res. 8, 267–399 (1974)Google Scholar
  14. Myers, J.H., Krebs, C.J.: Genetic, behavioral, and reproductive attributes of dispersing field voles Microtus pennsylvanicus and Microtus ochrogaster. Ecol. Monogr. 41, 53–78 (1971)Google Scholar
  15. Pitelka, F.A.: Cyclic patterns in lemming populations near Barrow, Alaska. In: Alaskan Arctic Tundra (M.E. Britton, ed.), pp. 199–215. Tech. Paper No. 25. Washington: Arctic Inst. North America 1973Google Scholar
  16. Smith, M.H., Garten, C.T., Jr., Ramsey, P.R.: Genic heterozygosity and population dynamics in small mammals. In: Isozymes. IV. Genetics and evolution, Markert, C.L., ed. New York: Academic Press 1975Google Scholar
  17. Tamarin, R.H.: Dispersal, population regulation and K-selection in field mice. Am. Natur. 112, 545–555 (1978)Google Scholar
  18. Tast, J., Kalela, O.: Comparison between rodent cycles and plant production in Finnish Lapland. Ann. Acad. Sci. Fenn. A, IV Biologica. 186, 1–14 (1971)Google Scholar
  19. Turner, B.N., Iverson, S.L.: The annual cycle of aggression in male Microtus pennsylvanicus, and its relation to population parameters. Ecology 54, 967–981 (1973)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • E. L. Charnov
    • 1
  • J. P. Finerty
    • 1
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations