Advertisement

Immunogenetics

, Volume 26, Issue 4–5, pp 230–236 | Cite as

Immune responsiveness to Ambrosia artemishfolia (short ragweed) pollen allergen Amb a VI (Ra6) is associated with HLA-DR5 in allergic humans

  • David G. Marsh
  • Linda R. Freidhoff
  • Eva Ehrlich-Kautzky
  • Wilma B. Bias
  • Marianne Roebber
Article

Abstract

The relationship between HLA type and specific immune responsiveness toward ultrapure Ambrosia artemisiifolia (short ragweed) pollen allergen Amb a VI (Ra6) was explored in a genetic-epidemiologic study of groups of 116 and 81 Caucasoid subjects who were skin-test \ positive (ST) toward common environmental allergens. Specific immune responsiveness to Amb a VI was assessed by measuring serum IgE and IgG antibodies (Abs) by double Ab radioimmunoassay in both ST groups. Significant associations were found between IgE Ab responsiveness to Amb a VI and the possession of HLA-DR5; P values for the two groups were, respectively, 7 × 10−7 and 1 × 10−3 by nonparametric analyses, and 4 × 10−11 and 5 × 10−8 by parametric analyses. The levels of significance for the associations between HLA-DR5 and IgG Ab responsiveness were highly dependent on the extent of ragweed immunotherapy (Rx) within the patient group; by parametric statistics, the associations were 10−11 for the group that had received relatively little Rx and 2 × 10−3 for the group that had received more intensive Rx. These results provide further striking evidence for the existence of specific HLA-linked human Ir genes involved in responsiveness toward inhaled allergens and illustrate the usefulness of the allergy model in studies of the genetic basis of human immune responsiveness. Extension of these studies to investigation of structure-function relationships involved in antigen recognition by Ia molecules and the T-cell receptor will lead to a better understanding of human susceptibility toward immunologic diseases.

Keywords

Specific Immune Responsiveness Pollen Allergen Antigen Recognition Immunologic Disease Environmental Allergen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in this paper

Ab

antibody

Amb a VI

Amb a V, new IUIS nomenclature for Ambrosia artemisiifolia pollen allergens nos. 6 and 5 (short ragweed Ra6 and Ra5) (Marsh et al. 1986b)

Lol p II, III

new IUIS nomenclature for Lolium perenne pollen allergens II and III (perennial rye grass, Rye II and Rye III) (Marsh et al. 1986b)

BBS

borate-buffered physiologic saline

BSA

bovine serum albumin

DARIA

double-antibody radioimunoassay

Ia

immune-associated

PAGE

polyacrylamide gel electrophoresis

RIST

radioimmunosorbent test

Rx

immunotherapy

SDS

sodium dodecyl sulfate

ST

skin test

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, D. B., Bashir, H., MacQueen, M., and Tiilikainen, A.: A simple microcytotoxicity test. Transplantation 7: 220–223, 1969Google Scholar
  2. Ansari, A. A., Shenbagamurthi, P., Kihara, T. K., and Marsh, D. G.: Structural and immunological studies of Lolium perenne (rye) allergens Lol p I, II and III. Fed. Proc. 46: 1046 (abstract), 1987Google Scholar
  3. Barbee, R. A., Brown, W. G., Kaltenborn, W., and Halonen, M.: Allergy skin-test reactivity in a community population sample: Correlation with age, histamine skin reactions and total immunoglobulin E. J. Allergy Clin. Immunol. 68: 15–19, 1981Google Scholar
  4. Baur, M. P., Neugebauer, M., and Albert, E. D.: Reference tables of two-locus haplotype frequencies for all MHC marker loci. In M. P. Baur, E. D. Albert, and W. R. Mayr (eds.): Histocompatibility Testing 1984, pp. 677–755, Springer-Verlag, Berlin, 1984Google Scholar
  5. Berzofsky, J. A.: Structural features of protein antigenic sites recognized by helper T cells: What makes a site immunodominant? Year Immunol. 2: 28–38, 1986Google Scholar
  6. Bias, W. B., Hsu, S. H., Pollard, M. K., Harvey, J., Lotze, M. T., Arnett, F. C., and Stevens, M. B.: HLA-DR characterization of the Chippewa Indian sub-population with high prevalence of rheumatoid arthritis. Hum. Immunol. 2: 155–161, 1981Google Scholar
  7. Blumenthal, M., Awdeh, Z., Alper, C., and Yunis, E.: Ra5 immune responses, HLA antigens and complotypes. J. Allergy Clin. Immunol. 75: 155 (abstract), 1985Google Scholar
  8. Didier, D. K., Schiffenbauer, J., Shuman, S., Abruzzini, L. F., Gorski, J., Watling, D. L., Tieber, V. L., and Schwartz, B. D.: Characterization of two distinct DRβ chain alleles at the β III 1 locus of the DR5 haplotype: β III, alleles are highly conserved. J. Immunol. 137: 2627–2631, 1986Google Scholar
  9. Engelfriet, C., de Lange, G., Hilterman, T., and van den Berg-Loonen, E.: DR5: Joint report. In P. I. Terasaki (ed.): Histocompatibility Testing 1980, pp. 518–521, UCLA Tissue Typing Laboratory, Los Angeles, 1980Google Scholar
  10. Freidhoff, L. R.: Epidemiology of allergy. In D. G. Marsh and M. N. Blumenthal (eds.): Genetic and Environmental Factors in Clinical Allergy, in press, University of Minnesota Press, Minneapolis, 1987Google Scholar
  11. Freidhoff, L. R., Meyers, D. A., Bias, W. B., Chase, G. A., Hussain, R., and Marsh, D. G.: A genetic-epidemiologic study of human immune responsiveness to allergens in an industrial population. I. Epidemiology of reported allergy and skin-test positivity. Am J. Med. Genet. 9: 323–340, 1981Google Scholar
  12. Freidhoff, L. R., Marsh, D. G., Meyers, D. A., and Hussain, R.: The structuring of an allergy index based on IgE-mediated skin sensitivity to common environmental allergens. J. Allergy Clin. Immunol. 72: 274–287, 1983Google Scholar
  13. Freidhoff, L. R., Meyers, D. A., and Marsh, D. G.: A genetic-epidemiologic study of human immune responsiveness to allergens in an industrial population. II. The associations among skin sensitivity, total serum IgE, age and sex in a stratified random sample. J. Allergy Clin. Immunol. 73: 490–499, 1984Google Scholar
  14. Freidhoff, L. R., Meyers, D. A., Kautzky, E. E., Bias, W. B., Hsu, S. H., and Marsh, D. G.: Epidemiology and genetics of response to whole rye extract, Rye I and Rye II. J. Allergy Clin. Immunol. 75: 156 (abstract), 1985Google Scholar
  15. Freidhoff, L. R., Kautzky, E. E., Grant, J. H., Meyers, D. A., and Marsh, D. G.: A study of human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (Rye I and II). I. Prevalence of reactivity to the allergens and correlations among skin-test, IgE antibody and IgG antibody data. J. Allergy Clin. Immunol. 78: 1190–1201, 1986Google Scholar
  16. Goodfriend, L., Choudhury, A. M., Klapper, D. G., Coulter, K. M., Dorval, G., DelCarpio, J., and Osterland, C. K.: Ra5G, a homologue of Ra5 in giant ragweed pollen: Isolation, HLA-DR associated activity and amino acid sequence. Mol. Immunol. 22: 899–906, 1985Google Scholar
  17. Heber-Katz, E., Hansburg, D., and Schwartz, R. H.: The Ia molecule of the antigen-presenting cell plays a critical role in immune response gene regulation of T cell activation. J. Mol. Cell. Immunol. 1: 3–14, 1983Google Scholar
  18. Marsh, D. G.: Allergens and the genetics of allergy. In M. Sela (ed.): The Antigens, Volume III, pp. 271–359, Academic Press, New York, 1975Google Scholar
  19. Marsh, D. G.: Allergy: A model for studying the genetics of human immune response. In S. G. O. Johansson, K. Strandberg, and B. Uvnas (eds.): Molecular and Biological Aspects of the Acute Allergic Reaction, Nobel Symposium No. 33, pp. 23–57, Plenum Publishing Co., New York, 1976Google Scholar
  20. Marsh, D. G.: Defining human immune response fingerprints toward ultra-pure allergens: Immunochemical and genetic aspects of responsiveness toward the Amb V (Ra5) homologues. J. Allergy Clin. Immunol. 78 (supplement): 242–248, 1986Google Scholar
  21. Marsh, D. G., Meyers, D. A., and Bias, W. B.: The epidemiology and genetics of atopic allergy. N. Engl. J. Med. 305: 1551–1559, 1981Google Scholar
  22. Marsh, D. G., Hsu, S. H., Roebber, M., Kautzky, E. E., Freidhoff, L. R., Meyers, D. A., Pollard, M. K., and Bias, W. B.: HLA-Dw2: A genetic marker for human immune response to short ragweed pollen allergen Ra5. I. Response resulting primarily from natural antigenic exposure. J. Exp. Med. 155: 1439–1451, 1982aGoogle Scholar
  23. Marsh, D. G., Meyers, D. A., Freidhoff, L. R., Kautzky, E. E., Roebber, M., Norman, P. S., Hsu, S. H., and Bias, W. B.: HLA-Dw2: A genetic marker of human immune response to short ragweed pollen allergen Ra5. II. Response after ragweed immunotherapy. J. Exp. Med. 155: 1452–1463, 1982bGoogle Scholar
  24. Marsh, D. G., Freidhoff, L. R., Bias, W. B., and Roebber, M.: Immune response to Amb a VI (Ra6) is associated with HLA-DR5 in allergic humans. Fed. Proc. 45: 490 (abstract), 1986aGoogle Scholar
  25. Marsh, D. G., Goodfriend, L., King, T. P., Løwenstein, H., and Plaits-Mills, T. A. E.: Allergen nomenclature. Bull WHO 64: 767–770, 1986bGoogle Scholar
  26. Mulligan, J. J., Osler, A. G., and Rodriguez, E.: Weight estimates of rabbit anti-human serum albumin based on antigen-binding capacity. J. Immunol. 96: 324–333, 1966Google Scholar
  27. Norman, P. S. and Lichtenstein, L. M.: The clinical and immunologic specificity of immunotherapy. J. Allergy Clin. Immunol. 61: 370–377, 1978Google Scholar
  28. Norman, P. S., Lichtenstein, L. M., and Marsh, D. G.: Studies on allergoids from naturally occurring allergens. IV. Efficacy and safety of long-term allergoid treatment of ragweed hay fever. J. Allergy Clin. Immunol. 68: 460–470, 1981Google Scholar
  29. Norman, P. S., Lichtenstein, L. M., Kagey-Sobotka, A., and Marsh, D. G.: Controlled evaluation of allergoid in the immunotherapy of ragweed hay fever. J. Allergy Clin. Immunol. 70: 248–260, 1982Google Scholar
  30. Platts-Mills, T. A. E.: Type I or hypersensitivity: Hay fever and asthma. In P. J. Lachmann and D. K. Peters (eds.): Clinical Aspects of Immunology, pp. 579–686, fourth edition, Blackwell, London, 1982Google Scholar
  31. Roebber, M., Hussain, R., Klapper, D. G., and Marsh, D. G.: Isolation and properties of a new short ragweed pollen allergen, Ra6. J. Immunol. 131: 706–711, 1983Google Scholar
  32. Roebber, M., Klapper, D. G., Goodfriend, L., Bias, W. B., Hsu, S. H., and Marsh, D. G.: Immunochemical and genetic studies of Amb. t. V (Ra5G), an Ra5 homologue from giant ragweed pollen. J. Immunol. 134: 3062–3069, 1985Google Scholar
  33. Schellenberg, R. R. and Adkinson, N. F.: Measurement of absolute amounts of antigen-specific human IgE by a radioallergosorbent test (RAST) elution technique. J. Immunol. 115: 1577–1583, 1975Google Scholar
  34. Spouge, J. L., Guy, H. R., Cornette, J. L., Margalit, H., Cease, K., Berzofsky, J. A., and DeLisi, C.: Strong conformational propensities enhance T cell antigenicity. J. Immunol. 138: 204–212, 1987Google Scholar
  35. Tieber, V. L., Abruzzini, L. F., Didier, D. K., Schwartz, B. D., and Rotwein, P.: Complete characterization and sequence of an HLA class II DRβ chain cDNA from the DR5 haplotype. J. Biol. Chem. 261: 2738–2742, 1986Google Scholar
  36. Van Rood, J. J., van Leeuwen, A., Keuning, J. J., and Blussé van oud Alblas, A.: The serological recognition of the human MLC determinants using a modified cytotoxicity technique. Tissue Antigens 5: 73–80, 1975Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • David G. Marsh
    • 1
  • Linda R. Freidhoff
    • 1
  • Eva Ehrlich-Kautzky
    • 1
  • Wilma B. Bias
    • 1
  • Marianne Roebber
    • 1
  1. 1.Divisions of Clinical Immunology and Medical Genetics, Department of MedicineJohns Hopkins University School of Medicine at The Good Samaritan HospitalBaltimoreUSA

Personalised recommendations