Marine Biology

, Volume 117, Issue 1, pp 159–162 | Cite as

Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism

  • A. Arillo
  • G. Bavestrello
  • B. Burlando
  • M. Sarà
Article

Abstract

Metabolic relationships between symbiotic cyanobacteria and host sponge have been investigated in the marine species Chondrilla nucula and Petrosia ficiformis (collected in the Ligurian Sea in 1992). DNA, RNA, total protein, cytosolic protein, total sugar, cytosolic sugar, total lipid, nonprotein sulfhydryl groups, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were assayed in cortex-free sponge tissue, where cyanobacteria are all but absent. For both species, biochemical parameters were determined in specimens living in illuminated habitats and in dark caves, where sponges are virtually aposymbiotic for cyanobacteria. As C. nucula is unable to colonize dark sites, specimens of this species were artificially transferred to a cave and maintained in dark conditions for 6 mo. Results showed that in the absence of light (i.e., in the absence of cyanobacteria) C. nucula undergo metabolic collapse and thiol depletion. In contrast, P. ficiformis activates heterotrophic metabolism and mechanisms which balance the loss of cell reducing power. This suggests that cyanobacteria effectively participate in controlling the redox potential of the host cells by the transfer of reducing equivalents. Only P. ficiformis is capable of counteracting, by means of heterotrophic metabolism, the loss of the contribution from symbionts which is caused by dark conditions. This explains the differences in the ecological requirements of the two species. Because cyanobacterial symbionts release fixed carbon in the form of glycerol and other small organic phosphate (Wilkinson 1979), a model based on the glycerol 3-phosphate shuttle (typically occurring in chloroplasts and mitochondria) is suggested. The mechanism proposed appears to be an ancient biochemical adaptation which arose among ancestral symbiotic systems, and further developed in the relationships between endosymbiotic organelles and cytoplasm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bavestrello, G., Sarà, M. (1992). Morphological and genetic differences in ecologically distinct populations of Petrosia (Porifera, Demospongiae). Biol. J. Linn. Soc. 47: 49–60Google Scholar
  2. Bligh, E. G., Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917Google Scholar
  3. Bond, C. (1992). Continuous cell movements rearrange anatomical structures in intact sponges. J. exp. Zool. 263: 284–302Google Scholar
  4. Buckley, L. J. (1979). Relationships between RNA-DNA ratio, prey density and growth rate in Atlantic cod (Gadus morhua) larvae. J. Fish. Res. Bd Can. 36: 1497–1502Google Scholar
  5. Buckley, L. J. (1984). RNA-DNA ratio: an index of larval fish growth in the sea. Mar. Biol. 80: 291–298Google Scholar
  6. Burton, K. (1956). A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62: 315–323Google Scholar
  7. Cook, C. B. (1983). Metabolic interchance in algae-invertebrate symbiosis. In: Jeon, K. W. (ed.) Intracellular Simbiosis. Int. Rev. Cytol. (suppl. 14), Academic Press, New York, p. 177–210Google Scholar
  8. Dagg, M. J., Littlepage, J. L. (1972). Relationships between growth rate and RNA, DNA, protein and dry weight in Artemia salina and Euchaeta elongata. Mar. Biol. 17: 162–170Google Scholar
  9. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356Google Scholar
  10. Gaino, E., Pansini, M., Pronzato, R. (1976). Osservazioni sull'associazione tra una cianoficea croococcale e la demospongia Chondrilla nucula. Arch. Oceanogr. Limnol. (Suppl. 18) 3: 545–552Google Scholar
  11. Gaino, E., Pansini, M., Pronzato, R. (1977). Aspetti dell'associazione tra Chondrilla nucula (Schmidt) (Demospongiae) e microorganismi simbionti (batteri e cianoficee) in condizioni naturali e sperimentali. Cah. Biol. mar. 18: 303–310Google Scholar
  12. Heber, U. (1974). Metabolite exchange between chloroplasts and cytoplasm. A. Rev. Pl. Physiol. 25: 393–421Google Scholar
  13. Keppler, D., Decker, K. (1974). Glycogen. Determination with amyloglucosidase. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol. 3. Verlag Chemie, Academic Press, New York, p. 1127–1131Google Scholar
  14. King, J. (1974). 6-Phosphogluconate dehydrogenase. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol. 2. Verlag Chemie, Academic Press, New York, p. 632–635Google Scholar
  15. Löhr, G. W., Waller, H. D. (1974) Glucose-6-phosphate dehydrogenase. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol. 2. Verlag Chemie, Academic Press, New York, p. 636–643Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with Folin phenol reagent. J. biol. Chem. 193: 265–275Google Scholar
  17. Marsh, J. H., Weinstein, D. B. (1966). A simple charring method for determination of lipids. J. Lipid Res. 7: 574–576Google Scholar
  18. Munro, H. N., Fleck, A. (1966). Recent developments in the measurement of nucleic acids in biological materials. Analyst Lond. 91: 78–88Google Scholar
  19. Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, N.Y. 156: 516–519Google Scholar
  20. Sarà, M. (1971). Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar. Biol. 11: 214–221Google Scholar
  21. Sarà, M., Liaci, L. (1964). Associazione tra la cianoficea Aphanocapsa feldmanni e alcune demosponge marine. Boll. Zool. 31: 55–65Google Scholar
  22. Sarà, M., Vacelet, J. (1973). Ecologie des Démosponges. In: Grassé P. P. (ed.) Traitè de Zoologie, Tome III. Spongiaires. Masson, Paris, p. 462–576Google Scholar
  23. Sedlak, J., Lindsay, R. H. (1968). Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analyt. Biochem. 25: 192–205Google Scholar
  24. Vacelet, J. (1971). Etude en microscopie électronique de l'association entre une cyanophycée chroococcale et une éponge du genre Verongia. J. Microscopie 12: 363–380Google Scholar
  25. Vacelet, J., Donadey, C. (1977). Electron microscopy study of the association between some sponge and bacteria. J. exp. mar. Biol. Ecol. 30: 301–314Google Scholar
  26. Wright, D. A., Hetzel, E. W. (1985). Use of RNA:DNA ratios as an indicator of nutritional stress in the American oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 25: 199–206Google Scholar
  27. Wilkinson, C. (1978). Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar. Biol. 49: 161–167Google Scholar
  28. Wilkinson, C. (1979). Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi, C., Boury-Esnault, N. (eds) Biologie des spongiaires. Colloques Internationaux du CNRS, No 291, Editions du CNRS, Paris, p. 373–380Google Scholar
  29. Wilkinson, C., Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature, Lond. 279: 527–529Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Arillo
    • 1
  • G. Bavestrello
    • 1
  • B. Burlando
    • 1
  • M. Sarà
    • 1
  1. 1.Istituto di ZoologiaUniversità di GenovaGenovaItaly

Personalised recommendations