Marine Biology

, Volume 117, Issue 1, pp 45–52 | Cite as

Influence of light on algal symbionts of the deep water coral Leptoseris fragilis

  • P. Kaiser
  • D. Schlichter
  • H. W. Fricke


Photoadaptations of zooxanthellae living within the deep water coral Leptoseris fragilis taken from the Gulf of Aqaba (Red Sea) were studied. Specimens-collected in summer 1988 between 110 and 120 m depth —were transplanted to 70 and 160 m. At each depth individuals were exposed in their natural growth position (oral side facing the surface) or in a reverse growth position (oral side facing the bottom). After 1 yr of exposure the corals were collected and the zooxanthellae were isolated. As a function of the availability of light with depth and growth position several algal parameters showed changes which are related to photoadaptations. The relatively low density of zooxanthellae of 0.15x106 cellsxcm-2 at a natural growth depth of 116 m decreased to 0.0034x106 cellsxcm-2 (Δ2%) at 160 m in specimens growing with a natural orientation. In corals with a downward-facing oral surface at the same depth (160 m) only degenerated algae could be observed. With respect to depth dependence the volume of the algae decreased from 728 μm3 at 116 m to 406 μm3 at a depth of 160 m and the content of pigments increased. The augmentation of peridinin per cell was low (two times at 160 m compared to 116 m). Chlorophyll a and in particular chlorophyll c2 concentrations per cell were enhanced. Compared to natural amounts at 116 m, chl a was five times and chl c2 eight times higher at 160 m. At all depths the chl c2 content per cell was higher than for chl a. The formation of chl a/chl c2 complexes as light harvestor is discussed. Light harvesting, with chl c2 prevailing may be explained as a special type of chromatic adaptation of L. fragilis in a double sense: (1) in the habitat light short wavelengths predominate. This light can be directly absorbed with pigments such as chl a and chl c2. (2) Host pigments absorb visible violet light and transform these wavelengths, less suitable for photosynthesis, into longer ones by means of autofluorescence. The emitted longer wavelengths fit the absorption maxima of the algal pigments. Thus the host supports photosynthesis of his symbionts. Corals exposed at 160 m depth with a downward facing oral surface were alive after 1 yr and the host wavelength transforming pigment system was still present, but zooxanthellae were absent or degenerated. The light field at 160 m seems therefore to be critical: the combined photoadaptations of host and symbionts, allowing photosynthesis under barren light conditions, seem to be exhausted. In L. fragilis the photoadaptive strategies of host and symbionts cooperate harmoniously. In addition, the adaptations are interlocked with the particular light situation of the habitat with respect to light quantity and quality. The cooperation of physical and organismic parameters examplifies how evolution and, in particular, coevolution has led to optimal fitness.


Growth Position Peridinin Oral Side Chromatic Adaptation Algal Symbiont 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Czygan, F. C. (1968). Sekundär-Carotinoide in Grünalgen I. Chemie, Vorkommen und Faktoren, welche die Bildung dieser Polyene beeinflussen. Arch. Mikrobiol. 61: 81–102Google Scholar
  2. Dustan, P. (1979). Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a west Indian coral reef. Bull. mar. Sci. 29: 79–95Google Scholar
  3. Dustan, P. (1982). Depth-dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar. Biol. 68: 253–264Google Scholar
  4. Falkowski, P. G., Dubinsky, Z. (1981). Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature, Lond. 289: 172–174Google Scholar
  5. Falkowski, P. G., LaRoche, J. (1991). Acclimation to spectral irradiance in algae. J. Phycol. 27: 8–14Google Scholar
  6. Fricke, H. W., Schuhmacher, H. (1983). The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Pubbl. Staz. zool. Napoli (I: Mar. Ecol) 4: 163–194Google Scholar
  7. Fricke, H. W., Vareschi, W., Schlichter, D. (1987). Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Mar. Biol. 89: 143–147Google Scholar
  8. Hoegh-Guldberg, O., Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora hystrix Dana. J. exp. mar. Biol. Ecol. 129: 279–303Google Scholar
  9. Iglesias-Prieto, R., Govind, N. S., Trench, R. K. (1991). Apoprotein composition and spectroscopic characterization of the water-soluble peridinin-chlorophyll a-protein from three symbiotic dinoflagellates. Proc. R. Soc. Lond. (Ser. B) 246: 275–283Google Scholar
  10. Jeffrey, S. W. (1980). Algal pigment systems. In: Falkowski, P. G. (ed.) Productivity in the sea. Plenum Press, New York, p. 33–58Google Scholar
  11. Jeffrey, S. W., Haxo, F. T. (1968). Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol. Bull. mar. biol. Lab., Woods Hole 135: 149–165Google Scholar
  12. Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c and c in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194Google Scholar
  13. Jeffrey, S. W., Vesk, M. (1977). Effect of blue-green light on photosynthetic pigments and chloroplast structure in the marine diatom Stephanopyxis turris. J. Phycol. 13: 271–279Google Scholar
  14. Jokiel, P. L. (1988). Photoadaptation a critical process in the development function and maintenance of reef communities? Proc. 6th int. coral [Choat, J.H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville] Reef Symp. (1989)Google Scholar
  15. Kevin, K. M., Hudson, R. C. L. (1979). The role of zooxanthellae in the hermatypic coral Plesiastrea urvillei (Milne Edwards and Haime) from cold waters. J. exp. mar. Biol. Ecol. 36: 157–170Google Scholar
  16. Kinzie, R. A., Jokiel, P. L., York, R. (1984). Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar. Biol. 78: 239–248Google Scholar
  17. Levanon-Spanier, I., Padan E., Reiss, Z. (1979). Primary production in a desert-enclosed sea — the Gulf of Elat (Aqaba), Red Sea. Deep-Sea Res. 26 (6A): 673–685Google Scholar
  18. Lowry, O. H., Rosebrought, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. biol. Chem. 193: 265–275Google Scholar
  19. McCloskey, L. R., Muscatine, L. (1984). Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth. Proc. R. Soc. Lond. (Ser. B.) 222: 215–230Google Scholar
  20. Muscatine, L. (1980). Productivity of zooxanthellae. In: Falkowsksi, P. G. (ed.) Primary production in the sea. Plenum Press, New York, p. 381–402Google Scholar
  21. Pearson, E. S., Stephens, M. A. (1964). The ratio of range to standard deviation in the same normal sample. Biometrika 51: 484–487Google Scholar
  22. Perry, M. J., Talbot, M. C., Alberte, R. S. (1981). Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62: 91–101Google Scholar
  23. Porter, J. W. (1980). Reef corals in situ. In: Falkowski P. G. (ed.) Primary productivity in the sea. Plenum Press, New York, p. 403–410Google Scholar
  24. Porter, J. W., Muscatine, L., Dubinsky, Z., Falkowski, P. G. (1984). Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. Proc. R. Soc. Lond. (Ser. B) 161–180Google Scholar
  25. Prèzelin, B. B. (1976). The role of peridinin-chlorophyll a-proteins in the photosynthetic light adaptation of marine dinoflagellate. Glenodinium sp. Planta 130: 225–233Google Scholar
  26. Prèzelin, B. B., Alberte, R. S. (1978). Photosynthetic characteristics and organisation of chlorophyll in marine dinoflagellates. Proc. natn. Acad. Sci U.S.A. 75: 1801–1804Google Scholar
  27. Sachs, L. (1984). Angewandte Statistik, 6th edn. Springer, Berlin.Google Scholar
  28. Schlichter, D. (1990). Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77: 447–450Google Scholar
  29. Schlichter, D. (1991). A perforated gastrovascular cavity in Leptoseris fragilis: a new strategy to improve heterotrophic nutrition in corals. Naturwissenschaften 78: 467–469Google Scholar
  30. Schlichter, D., Fricke, H. W., Weber, W. (1986). Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91: 403–407Google Scholar
  31. Schlichter, D., Fricke, H. W. (1991). Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Hydrobiologia 216/217: 389–394Google Scholar
  32. Schlichter, D., Kremer, B. P. (1985). Metabolic competence of endocytobiotic dinoflagellates (zooxanthellae) in the soft coral, Heteroxenia fuscescens. Endocyt. Cell Res. 2: 71–82Google Scholar
  33. Schlichter, D., Svoboda, A., Kremer, B. P. (1983). Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78: 29–38Google Scholar
  34. Schlichter, D., Weber, W., Fricke, H. W. (1985). A chromatophore system in the hermatypic, deep water coral Leptoseris fragilis (Anthozoa: Hexacorallia). Mar. Biol. 89: 143–147Google Scholar
  35. Steen, R. G., Muscatine, L. (1984). Daily budgets of photosynthetically fixed carbon in symbiotic zoanthids. Biol. Bull. mar. biol. Lab., Woods Hole 167: 477–487Google Scholar
  36. Szmant-Froelich, A., Pilson, M. E. Q. (1980). The effects of feeding frequency and symbiosis with zooxanthellae on the biochemical composition of Astrangia danae Milne Edwards & Haime 1849. J. exp. mar. Biol. Ecol. 48: 85–97Google Scholar
  37. Titlyanov, E. A., Shaposhnikova, M. G., Zvalinskii, V. I. (1980). Photosynthesis and adaptation of corals to irradiance. I. Contents and native state of photosynthetic pigments in symbiotic microalgae. Photosynthetica (Praha, Czechoslovakia) 14: 413–421Google Scholar
  38. Vareschi, E., Fricke, H. W. (1986). Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90: 395–402Google Scholar
  39. Vesk, M., Jeffrey, S. W. (1977). Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellar marine algae from six classes. J. Phycol. 13: 280–288Google Scholar
  40. Wyman, K. D., Dubinsky, Z., Porter, J. W., Falkowski, P. G. (1987). Light absorption and utilisation among hermatypic corals: a study in Jamaica, West Indies. Mar. Biol. 96: 283–292Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • P. Kaiser
    • 1
  • D. Schlichter
    • 1
  • H. W. Fricke
    • 2
  1. 1.Zoologisches InstitutUniversität zu KölnKölnGermany
  2. 2.Max Planck Institut für VerhaltensphysiologieSeewiesenGermany

Personalised recommendations