Marine Biology

, Volume 115, Issue 2, pp 217–222 | Cite as

In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra

  • T. J. Cowles
  • R. A. Desiderio
  • S. Neuer
Article

Abstract

Vertical profiling of the upper ocean with a laser/fiber optic fluorometer enabled the determination of fluorescence emission spectra of photosynthetic pigments over small vertical scales. Simultaneous acquisition of phycoerythrin (PE) and chlorophyll (chl) emission spectra allowed in situ differentiation between PE-containing cells (cryptomonads and cyanobacteria) and other chl-containing autotrophs. Further, fluorescence spectral peak shifts associated with different species of PE-containing cells resulted in even finer scale in situ taxonomic differentiation. We found that the phycoerythrin fluorescence emission maxima shifted from 578 nm near the surface, to 585 μm at the base of the shallow thermocline (30% light level), and to 590 nm below the thermocline at the base of the euphotic zone (1% light level). These shifts in peak emission coincided with a taxonomic change in the PE-containing cells (as determined from analysis of discrete bottle samples) from a greater proportion of Synechococcus spp. in the upper water column to a greater proportion of cryptomonads at the base of the euphotic zone. These results indicate that the composition of the phytoplankton assemblage may be assessed in situ without sample collection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alberte, R. S., Wood, A. M., Kursar, T. A., Guillard, R. R. L. (1984). Novel phycoerythrins in marine Synechococcus spp. Characterization and evolutionary and ecological implications. Pl. Physiol. 75: 732–739Google Scholar
  2. Barlow, R. G., Alberte, R. S. (1985). Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. I. Responses to growth photon flux density. Mar. Biol. 86: 63–74Google Scholar
  3. Bidigare, R. R., Morrow, J. H., Kiefer, D. A. (1989). Derivation analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea. J. mar. Res. 47: 323–341Google Scholar
  4. Bricaud, A. A., Bedhomme, A., Morel, A. (1988). Optical properties of diverse phytoplankton species: experimental results and theoretical interpretation. J. Plankton Res. 10: 851–873Google Scholar
  5. Broenkow, W. W., Lewitus, A. J., Yarbrough, M. A. (1985). Spectral observations of pigment fluorescence in intermediate depth waters of the North Pacific. J. mar. Res. 43: 875–891Google Scholar
  6. Caldwell, D. R., Dillon, T. M., Moum, J. N. (1985). The rapid sampling vertical profiler: an evaluation. J. atmos. ocean. Technol. 3: 615–625Google Scholar
  7. Chisholm, S. W., Armbrust, E. V., Olson, R. J. (1986). The individual cell in phytoplankton ecology: cell cycles and the application of flow cytometry. Can. Bull. Fish. aquat. Sciences 214: 343–369Google Scholar
  8. Cowles, T. J., Desiderio, R. A., Moum, J. N., Myrick, M. L., Garvis, D., Angel, S. M. (1990). Fluorescence microstructure using a laser/fiber optic profiler. Ocean optics. X. Proc. photo-opt. Instrmn Engrs 1302: 336–345Google Scholar
  9. Cowles, T. J., Olson, R. J., Chisholm, S. W. (1988). Food selection by copepods: discrimination on the basis of food quality. Mar. Biol. 100: 41–49Google Scholar
  10. Desiderio, R. A., Cowles, T. J., Moum, J. N., Myrick, M. L. (1993). Microstructure profiles of laser induced chlorophyll fluorescence spectra: evaluation of backscatter and forward scatter fiber optic sensors. J. atmos. ocean. Technol. (in press)Google Scholar
  11. Exton, R. J., Houghton, W. M., Esaias, W., Haas, L. W., Hayward, D. (1983). Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanobacteria. Limnol. Oceanogr. 28: 1225–1231Google Scholar
  12. Goldman, J. C. (1988). Spatial and temporal discontinuities of biological processes in pelagic surface waters. In: B. Rothschild (ed.) Toward a theory of biological and physical interactions in the world ocean. Kluwer Academic, Dordrecht, Netherlands, p. 273–296Google Scholar
  13. Hood, R. R., Neuer, S., Cowles, T. J. (1992). A comparative study of autorophic production, biomass and species composition at two stations across an upwelling front. Mar. Ecol. Prog. Ser. 83: 221–232Google Scholar
  14. Iturriaga, R., Bartz, R., Zaneveld, J. R. V. (1990). In situ active fluorometer to measure coccoid cyanobacteria fluorescence. Ocean optics. X. Proc. photo-opt. Instrmn Engrs 1302: 346–354Google Scholar
  15. Kishino, M., Takahashi, M., Okami, N., Ichimura, S. (1985). Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. mar. Sci. 37: 634–642Google Scholar
  16. Li, W. K. W., Wood, A. M. (1988). Vertical distribution of North Atlantic ultraphytoplankton: analysis by flow cytometry and epifluorescence microscopy. Deep-Sea Res. 35: 1615–1638Google Scholar
  17. Lorenzen, C. J. (1966). A method for the continuous measurement of in vivo chlorophyll concentrations. Deep-Sea Res. 13: 223–227Google Scholar
  18. Mackas, D. L., Denman, K. L., Abbott, M. R. (1985). Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–674Google Scholar
  19. Marra, J., Bidigare, R. R., Dickey, T. D. (1990). Nutrients and mixing, chlorophyll and phytoplankton growth. Deep-Sea Res. 37: 127–143Google Scholar
  20. Murphy, L. S., Haugen, E. M. (1985). The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30: 47–58Google Scholar
  21. Myrick, M. L., Garvis, D. G., Desiderio, R. A., Angel, S. M. (1992). Field applications of fiber optic sensors. III: Design and construction of a fiber optic ocean probe. (In preparation)Google Scholar
  22. Olson, R. J., Chisholm, S. W., Zettler, E. R., Armbrust, E. V. (1988). Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep-Sea Res. 35A: 425–440Google Scholar
  23. Owen, R. W. (1989). Microscale and finescale variations of small plankton in coastal and pelagic environments. J. mar. Res. 47: 197–240Google Scholar
  24. Paffenhöfer, G.-A., Lewis, K. D. (1990). Perceptive performance and feeding behavior of calanoid copepods. J. Plankton Res 12: 933–946Google Scholar
  25. Rowan, K. S. (1989). Photosynthetic pigments of algae. University Press, Cambridge, EnglandGoogle Scholar
  26. Small, L. F., Menzies, D. W. (1981). Patterns of primary productivity and biomass in a coastal upwelling region. Deep-Sea Res 28A: 123–149Google Scholar
  27. Sokal, R. R., Rohlf, J. H. (1981). Biometry. I. The principles and practice of statistics in biological research. W. H. Freeman & Co., New YorkGoogle Scholar
  28. Strickland, J. D. H., Parsons, T. R. (1972). A practical manual of seawater analysis. 2nd ed. Bull. Fish. Res. Bd Can. 167: 1–310Google Scholar
  29. Waterbury, J. B., Watson, S. W., Guillard, R. R. L., Brand, L. E. (1979). Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature, Lond. 277: 293–294Google Scholar
  30. Wood, A. M. (1985). Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature, Lond. 316: 253–255Google Scholar
  31. Wood, A. M., Horan, P. K., Muirhead, K., Phinney, D. A., Yentsch, C. M., Waterbury, J. B. (1985). Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnol. Oceanogr. 30: 1303–1315Google Scholar
  32. Yentsch, C. S., Phinney, D. A. (1985). Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations. J. Plankton Res. 7: 617–632Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • T. J. Cowles
    • 1
  • R. A. Desiderio
    • 1
  • S. Neuer
    • 1
  1. 1.College of OceanographyOregon State UniversityCorvallisUSA

Personalised recommendations