Marine Biology

, Volume 115, Issue 2, pp 179–185 | Cite as

Sulfide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata)

  • A. Temara
  • C. de Ridder
  • J. G. Kuenen
  • L. A. Robertson
Article

Abstract

Symbiotic filamentous bacteria thrive in the intestinal caecum of the deposit-feeding echinoid Echinocardium cordatum. Specimens of E. cordatum were collected at Wimereux (Nord Pas-de-Calais, France) in 1991. Their symbiotic bacteria build nodules by forming multilayered mats around detrital particles that enter the caecum. The morphological features of the bacteria are those of Thiothrix, a sulfide-oxidizing genus. The filaments, which may form rosettes, are sheathed and made by a succession of hundreds of rod-shaped bacteria which store elemental sulfur in the presence of external sulfide. Live bacteria are restricted to the outer layers of the nodules. Their sulfide-oxidizing activity was investigated, using a Biological Oxygen Monitor, by measuring the O2-consumption when reduced sulfur compounds are provided. They oxidize thiosulfate and sulfide. Optimal sulfide oxidation occurs at intermediary pO2 (100 to 160 μM O2l-1). Spectrophotometry has confirmed that the sulfur content of the filamentous symbiotic sulfideoxidizing bacteria depends on the presence of external sulfide. This is the first report of symbiotic intradigestive Thiothrixspp.-like bacteria; it lengthens the list of symbioses between sulfide-oxidizing bacteria and invertebrates from sulfide-rich habitats.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bland, J. A., Staley, J. T. (1978). Observation on the biology of Thiothrix. Archs. Microbiol. 117: 79–87Google Scholar
  2. Burgh, M. E. de, Singla, C. L. (1984). Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar. Biol. 84: 1–6Google Scholar
  3. Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, Lond. 302: 58–61Google Scholar
  4. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342Google Scholar
  5. Charlot, G. (1966). Dosage des sulfures solubles en milieu acide fort par l'iode. In: Les méthodes de la chimie analytique, analyse quantitative minérale. Masson et Cie Paris, p. 1023Google Scholar
  6. De Ridder, C. (1986). La nutrition chez les échinodermes psammivores. Etude particulière du spatangide fouisseur Echinocardium cordatum (Pennant) (Echinodermata, Echinoïdea). Université Libre de Bruxelles (Faculté des Sciences) Ph. D. Thesis, BrusselsGoogle Scholar
  7. De Ridder, C., Jangoux, M. (1985). Origine des sédiments ingérés et durée du transit digestif chez l'oursin spatangide, Echinocardium cordatum (Pennant) (Echinodermata) Annls Inst. océanogr. Paris 6: 51–58Google Scholar
  8. De Ridder, C., Jangoux, M., De Vos, L. (1985). Description and significance of a peculiar intradigestive symbiosis between bacteria and a deposit-feeding echinoid. J. exp. mar. Biol. Ecol. 96: 65–75Google Scholar
  9. De Ridder, C., Jangoux, M., Van Impe, E. (1985). Food selection and absorption efficiency in the spatangoid echinoid, Echinocardium cordatum (Echinodermata). In: Keegan, B. F., O'Connor, B. D. (eds.) Proc. 5th int. Echinoderm Conf. Galway. Balkema, Rotterdam, p. 507–512Google Scholar
  10. Felbeck, H. (1981). Chemoautotrophic potentials of the hydrothermal vent tube worm Riftia pachyptila (Vestimentifera). Science, N. Y. 213: 336–338Google Scholar
  11. Felbeck, H. (1983). Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J. Comp. Physiol. 152: 3–11Google Scholar
  12. Felbeck, H. (1985). CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila Jones. Physiol. Zoöl. 58: 272–281Google Scholar
  13. Felbeck, H., Childress, J. J., Somero, G. N. (1981). Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature, Lond. 293: 291–293Google Scholar
  14. Fenchel, T., Finlay, B. J. (1989). Kentorphoros: a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30: 75–93Google Scholar
  15. Fenchel, T., Riedl, R. J. (1970). The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7: 255–268Google Scholar
  16. Gaill, F., Desbruyères, D., Prieur, D. (1987). Bacterial communities associated with “Pompei worms” from the East Pacific Rise hydrothermal vents: SEM, TEM observations. Microb. Ecol. 13: 129–139Google Scholar
  17. Gaill, F., Desbruyères, D., Prieur, D., Gourret, J. P. (1984). Mise en évidence de communautés bactériennes épibiontes du “Ver de Pompei” (Alvinella pompejana). C. r., hebd. Séanc. Acad. Sci. Paris 298 (III): 553–558Google Scholar
  18. Giere, O., Langheld, C. (1987). Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641–650Google Scholar
  19. Giere, O., Wirsen, C. O., Schmidt, C., Jannasch, H. W. (1988a). Contrasting effect of sulfide and thiosulfate on symbiotic CO2-assimilation of Phallodrilus leukodermatus (Annelida). Mar. Biol. 97: 413–419Google Scholar
  20. Giere, O., Rhode, B., Dubilier, N. (1988b). Structural peculiarities of the body wall of Tubificoides benedii (Oligochaeta) and possible relations to its life in sulphidic sediments. Zoomorphology 108: 29–39Google Scholar
  21. Harold, R., Stanier, R. Y. (1955). The genera Leucothrix and Thiothrix. Bact. Rev. 19: 49–64Google Scholar
  22. Hazeu, W., Batenburg-van der Vegte, W. H., Bos, P., van der Pas, R. K., Kuenen, J. G. (1988). The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Archs Microbiol. 150: 574–579Google Scholar
  23. Jannasch, H. W., Mottl, M. J. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, N. Y. 229: 717–725Google Scholar
  24. Jannasch, H. W., Wirsen, C. O. (1981). Morphological survey of microbial mats near deep-sea thermal vents. Appl. envirl. Microbiol. 41: 528–538Google Scholar
  25. Jørgensen, B. B., DesMarais, D. J. (1986). Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Fedn eur. microbiol. Soc. FEMS Microbiol. Ecol. 38: 179–186Google Scholar
  26. Jørgensen, B. B., Revsbesch, N. P. (1983). Colorless sulfur-oxidizing bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. envirol Microbiol. 45: 1261–1270Google Scholar
  27. Kuenen, J. G., Bos, P. (1988). Habitats and ecological niches of chemolitho(auto)trophic bacteria. In: Schlegel, H. G., Bowien, B. (eds.) Autotrophic bacteria. Science Tech. Publ., Madison, Wisconsin, p. 53–80Google Scholar
  28. Larkin, J. M. (1980). Isolation of Thiothrix in pure culture and observation of a filamentous epiphyte on Thiothrix. Curr. Microbiol. 4: 155–158Google Scholar
  29. Larkin, J. M., Henk, M. C., Burton, S. D. (1990). Occurrence of a Thiothrix sp. attached to mayfly larvae and presence of parasitic bacteria in the Thiothrix sp. Appl. envirl Microbiol. 56: 357–361Google Scholar
  30. Laubier, L., Desbruyères, D., Chassard-Bouchaud, C. (1983). Microanalytical evidence of sulfur accumulation in a polychaete from deep-sea hydrothermal vents. Mar. Biol. Lett. 4: 113–116Google Scholar
  31. Lawrey, N. V., Jani, V., Jensen, T. E. (1981). Identification of the sulfur inclusion body in Beggiatoa alba B18LD by energy-dispersive X-ray microanalysis. Curr. Microbiol. 6: 71–74Google Scholar
  32. Le Pennec, M., Fiala-Medioni, A. (1988). The role of the digestive tract of Calyptogena laubieri and Calyptogena phaseoliformis, vesicomyid bivalves of the subduction zones of Japan. Oceanologica Acta 11: 193–199Google Scholar
  33. Loiseleur, J. (1963). Techniques de laboratoire, Vol 2. Chimie clinique. Masson et Cie, ParisGoogle Scholar
  34. Nelson, D. C., Wirsen, C. O., Jannash, H. W. (1989). Characterization of large autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guayamas Bassin. Appl. envirol Microbiol. 55: 2909–2917Google Scholar
  35. Oeschger, R., Schmaljohann, R. (1988). Association of various types of epibacteria with Halicryptus spinulosus (Priapulida). Mar. Ecol. Prog. Ser. 48: 285–293Google Scholar
  36. Ott, J. A., Novak, R. (1989). Living at an interface: meiofauna at the oxygen/sulfide boundary of marine sediments. In: Ryland, J. S., Tyler, P. A. (eds.) Reproduction, genetics and distribution of marine organisms. 23rd European Marine Biology Symposium, p. 415–422Google Scholar
  37. Powell, E. N., Crenshaw, M. A., Rieger, R. M. (1979). Adapatations to sulfide in the meiofauna of the sulfide system I. 35S-sulfide accumulation and the presence of a sulfide detoxification system. J. exp. mar. Biol. Ecol. 37: 57–76Google Scholar
  38. Prieur, D., Jeanthon, C. (1987). Preliminary study of heterotrophic bacteria isolated from two deep-sea hydrothermal vent invertebrates: Alvinella pompejana (Polychaete) and Bathymodiolus thermophilus (Bivalve). Symbioses 4: 87–98Google Scholar
  39. Rau, G. H., Hedges, J. I. (1979). Carbon-13 depletion in a hydrothermal vent mussel: suggestion of chemosynthetic food source. Science, N. Y. 203: 648–649Google Scholar
  40. Reid, R. G. B., Brand, D. G. (1986). Sulfide-oxydizing symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29 (1): 3–24Google Scholar
  41. Somero, G. N., Childress, J. J., Anderson, A. E. (1989). Transport, metabolism, and detoxification of hydrogen sulfide in animals from sulfide-rich marine environments. CRC critical Rev. aquat. Sci. 1: 591–614Google Scholar
  42. Southward, A. J., Southward, E. C., Dando, P. R., Barrett, R. L., Ling, R. (1986). Chemoautotrophic function of bacterial symbionts in small pogonophora. J. mar. biol. Ass. U. K. 66: 415–437Google Scholar
  43. Strohl, W. R. (1974). Beggiatoales. In: Buchanan, R. E., Gibbons, N. E. (eds.) Bergey's manual of determinative bacteriology, 8th edn. The Williams & Wilkins Co., Baltimore, Maryland, p. 2089–2105Google Scholar
  44. Strohl, W. R., Geffers, I., Larkin, J. M. (1981). Structure of the sulfur inclusion envelopes from four Beggiatoas. Curr. Microbiol. 6: 75–79Google Scholar
  45. Temara, A. (1990). Caractères d'une symbiose bactérienne intradigestive chez l'echinide fouisseur Echinocardium cordatum (Echinodermata). Université Libre de Bruxelles (Faculté des Sciences), Master Thesis, BrusselsGoogle Scholar
  46. Temara, A., De Ridder, C. (1990). Features of an intradigestive bacterial symbiosis in the burrowing echinoid Echinocardium cordatum. Belgian J. Zool. 120: 56 (abstract)Google Scholar
  47. Temara, A., De Ridder, C., Kaisin, M. (1991). Presence of an essential polyunsaturated fatty acid in intradigestive bacterial symbionts of a deposit-feeder echinoid (Echinodermata). Comp. Biochem. Physiol. 100: 503–505Google Scholar
  48. Vetter, R. D. (1985). Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88: 33–42Google Scholar
  49. Vismann, B. (1990). Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Mar. Ecol. Prog. Ser. 59: 229–238Google Scholar
  50. Vismann, B. (1991). Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia. 34: 1–27Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Temara
    • 1
  • C. de Ridder
    • 1
  • J. G. Kuenen
    • 2
  • L. A. Robertson
    • 2
  1. 1.Laboratoire de Biologie marineUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Kluyver Laboratory of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations