Marine Biology

, Volume 117, Issue 2, pp 279–287 | Cite as

In situ observations of foraging, feeding, and escape behavior in three orders of oceanic ctenophores: Lobata, Cestida, and Beroida

  • G. I. Matsumoto
  • G. R. Harbison


The foraging, feeding, and escape behaviors of members of four genera of oceanic ctenophores were studied by direct observation in the field during the summer of 1987 (7 July to 7 September) on R. V. “Oceanus” Cruise 191 to the Northern Sargasso and Slope water, in an area bounded by 34° to 39°N and 67° and 74°W. Patterns of water movement around these ctenophores were studied using fluorescein dye. Bolinopsis infundibulum forages vertically, capturing prey with mucus-covered oral lobes. Species of Ocyropsis forage horizontally and produce a reduced wake, due to the extreme compression of the body and the aboral location of the ctene rows. Prey are trapped by the muscular oral lobes and ingested by the prehensile mouth. In both genera, the auricles are held rigidly, and apparently are used both to reduce the pressure wave as they forage and to startle prey onto the surfaces of the oral lobes. Cestum veneris also forages horizontally, but continually reverses direction. Prey startled by the turbulent wake produced in the previous pass are captured by tentilla that stream over the sides of the body. All three species of Beroe studied swim in a spiral while foraging and produce similar wakes. Prey are ingested by the negative pressure produced by the rapid expansion of the mouth, and with the macrocilia that line the oral portion of the stomodaeum. The escape behavior of species of Bolinopsis, Ocyropsis, and Cestum appears to function primarily to elude nonvisual predators such as Beroe spp. Species of Beroe bend and swim rapidly during the escape response, and will turn themselves inside-out when repeatedly stimulated. The types of prey captured depend in part on an interplay of foraging and feeding mechanisms.


Fluorescein Direct Observation Negative Pressure Pressure Wave Water Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alexander, R. M. (1988). Elastic mechanisms in animal movement. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  2. Anderson, E. (1974). Trophic interactions among ctenophores and copepods in St. Margaret's Bay, Nova Scotia. Ph. D. thesis. Dalhousie University, Nova ScotiaGoogle Scholar
  3. Ceccaldi, H. J. (1972). Observations biologiques de Cestus veneris. Téthys 4: 707–710Google Scholar
  4. Gerritsen, J. (1984). Size efficiency reconsidered: a general foraging model for free-swimming aquatic animals. Am. Nat. 123: 450–467Google Scholar
  5. Greve, W. (1972). Ökologische Untersuchungen an Pleurobrachia pileus. 2. Laboratoriumsuntersuchungen. Helgoländer wiss. Meeresunters. 23: 141–164Google Scholar
  6. Greve, W., Stockner, J., Fulton, J. (1976). Towards a theory of speciation in Beroe. In: Mackie, G. O. (ed.) Coelenterate ecology and behavior. Plenum Press, New York, p. 251–258Google Scholar
  7. Hamner, W. M. (1974). Blue water plankton. Natn. geogr. Mag. 146: 530–545Google Scholar
  8. Hamner, W. M. (1990). Design developments in the planktonkreisel, a plankton aquarium for ships at sea. J. Plankton Res. 12: 397–402Google Scholar
  9. Hamner, W. M., Strand, S. W., Matsumoto, G. I., Hamner, P. P. (1987). Observations on foraging behavior of the ctenophore Leucothea n. sp. in the open sea. Limnol. Oceanogr. 32: 645–652Google Scholar
  10. Harbison, G. R. (1985). On the classification and evolution of the Ctenophora. In: Morris, S. C., George, J. D., Gibson, R. Platt, H. M. (eds). The origins and relationships of lower invertebrates. Systematics Assoc. Spec. Vol. #28. Clarendon Press, Oxford, p. 78–100Google Scholar
  11. Harbison, G. R. (1991). Names of Ctenophora. Spec. Publs Am. Fish. Soc. 22: 49–51Google Scholar
  12. Harbison, G. R., Madin, L. P., Swanberg, N. R. (1978). On the natural history and distribution of oceanic ctenophores. Deep-Sea Res. 25: 233–256Google Scholar
  13. Harbison, G. R., Miller, R. L. (1986). Not all ctenophores are hermaphrodites. Studies on the systematics, distribution, sexuality and development of two species of Ocyropsis. Mar. Biol. 90: 413–424Google Scholar
  14. Haury, L. R., Kenyon, D. E., Brooks, J. R. (1980). Experimental evaluation of the avoidance reaction of Calanus finmarchicus. J. Plankton Res. 2: 187–202Google Scholar
  15. Joll, L. M. (1989). Swimming behaviour of the saucer scallop Amusium balloti (Mollusca: Pectinidae). Mar. Biol. 102: 299–305Google Scholar
  16. Kerfoot, W. C. (1978). Combat between predatory copepods and their prey: Cyclops, Epischura, and Bosmina. Limnol. Oceanogr. 28: 1089–1102Google Scholar
  17. Kerfoot, W. C., Kellogg, Jr., D. L., Strickler, J. R. (1980). Visual observations of live zooplankters: evasion, escape, and chemical defenses. Spec. Symp. Am. Soc. Limnol. Oceanogr. 3: 10–27Google Scholar
  18. Kuhl, W. (1932). Rippenquallen beim Beutefang. Natur Mus., Frankf. 62: 130–133Google Scholar
  19. Lalli, C. M. (1970). Structure and function of the buccal apparatus of Clione limacina (Phipps) with a review of feeding in gymnosomatous pteropods. J. exp. mar. Biol. Ecol. 4: 101–118Google Scholar
  20. Mackie, G. O., Mills, C. E. (1983). Use of the Pisces IV submersible for zooplankton studies in coastal waters of British Columbia. Can. J. Fish. aquat. Sciences 40: 763–776Google Scholar
  21. Main, R. J. (1928). Feeding mechanism of Mnemiopsis. Biol. Bull. mar. biol. Lab., Woods Hole 55: 69–78Google Scholar
  22. Matsumoto, G. I. (1987). Manipulation of water flow by ctenophores (phylum Ctenophora). In: Lang, M. L. (ed.) Proceedings of the American Academy of Underwater Sciences, Coldwater Diving for Science Symposium. American Academy of Underwater Sciences, Seattle, Washington, p. 175–188Google Scholar
  23. Matsumoto, G. I., Hamner, W. M. (1988). Modes of water manipulation by the lobate ctenophore Leucothea sp. Mar. Biol. 97: 551–558Google Scholar
  24. Mauchline, J. (1980). The biology of mysid and euphausiids. Adv. mar. Biol. 18: 373–677Google Scholar
  25. Nagabhushanam, A. K. (1959). Feeding of a ctenophore Bolinopsis infundibulum (O. F. Müller). Nature, Lond. 184: 829Google Scholar
  26. Ohman, M. D. (1988). Behavioral responses of zooplankton to predation. Bull. mar. Sci. 43: 530–550Google Scholar
  27. Pfitzner, I. (1962). Zur Bewegung von Cestus veneris Lesueur (Ctenophora); eine Filmanalyse. Zool. Jb. (Abt. allg. Zool. Physiol. Tiere) 69: 577–598Google Scholar
  28. Reeve, M. R., Walter, M. A. (1978). Nutritional ecology of ctenophores — a review of recent research. Adv. mar. Biol. 15: 249–287Google Scholar
  29. Schulze-Röbbecke, A. C. (1984). Functional morphology of Bolinopsis infundibulum (Ctenophora). Helgoländer Meeresunters. 38: 47–64Google Scholar
  30. Stretch, J. J. (1982). Observations on the abundance and feeding behavior of the cestid ctenophore, Velamen parallelum. Bull. mar. Sci. 32: 796–799Google Scholar
  31. Swanberg, N. (1974). The feeding behavior of Beroe ovata. Mar. Biol 24: 69–76Google Scholar
  32. Tamm, S., Tamm, S. (1991). Macrociliary tooth patterns in beroid ctenophores. Biol. Bull. mar. biol Lab., Woods Hole 181: 355–356Google Scholar
  33. Vogel, S. (1981). Life in moving fluids. The physical biology of flow. Princeton University Press, Princeton, N. J.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. I. Matsumoto
    • 1
  • G. R. Harbison
    • 2
  1. 1.Monterey Bay Aquarium Research InstitutePacific GroveUSA
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations