Marine Biology

, Volume 117, Issue 2, pp 243–250 | Cite as

Growth in the bivalve Yoldia eightsi at Signy Island, Antarctica, determined from internal shell increments and calcium-45 incorporation

  • Conor P. Nolan
  • Andrew Clarke


The growth rate of the infaunal nuculanid bivalve Yoldia eightsi at Factory Cove, Signy Island, South Orkney Islands (maritime Antarctica), was estimated from internal shell increments and 45Ca incorporation of individuals collected monthly from December 1987 to April 1989. Acetate peels of etched shells revealed clear first-order increments, with less well defined, narrower, second-and third-order increments. The first-order increments were assumed to be annual, although there is no independent confirmation of this assumption. Unfortunately abrasion of the umbo region and the small thin shells of Y. eightsi meant that in no case could a complete sequence of increments be measured realiably on any individual shell. Measurements of 1043 first-order increments from 130 shells where a minimum of two consecutive increments could be detected were therefore pooled, and a population growth curve constructed from a Ford-Walford plot. This indicated a slow growth rate, with a maximum shell height of 22.3 mm (equivalent to a shell length of 35.6 mm) being reached at an age >60 yr. The size-frequency distribution of 1521 individuals pooled from winter (July to October) samples revealed a distinct lack of smaller (younger) individuals, possibly reflecting poor recruitment in areas of dense adult populations. The largest shell recovered in the samples was 33.5 mm in length, with an estimated age of 52 yr. Short-term 45Ca-incorporation experiments indicated a mean daily rate of growth increment of 3.8 μm for individuals of 12 mm shell height, which matches the proposed annual growth rate if growth is assumed to occur for about 150 d each year and the first-order increments are assumed to be annual.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ansell, A. D. (1968). The rate of growth of the hard clam Mercenaria mercenaria (L.) throughout the geographical range. J. Cons. perm. int. Explor. Mer 31: 364–409Google Scholar
  2. Barker, R. M. (1964). Microtextural variation in pelecypod shells. Malacologia 2: 69–86Google Scholar
  3. Berkmann, P. A. (1990). Population biology of the Antarctic Adamussium colbecki (Smith, 1902) at New Harbour, Ross Sea. In: Kerry, K. R., Hempel, G. (eds.) Antarctic ecosystems: ecological change and conservation. Springer-Verlag, Berlin, p. 281–288Google Scholar
  4. Vevelander, G. (1952). Calcification in molluscs. III. Intake and deposition of Ca45 and P32 in relation to shell formation. Biol. Bull. mar. biol. Lab., Woods Hole 102: 9–15Google Scholar
  5. Brey, T., Clarke, A. (1993). Population dynamics of marine benthic invertebrates in Antarctic and Sub-Antarctic environments: are these unique adaptations? Antarctic Sci. 5: 253–266Google Scholar
  6. Clark, G. R. (1974). Growth lines in invertebrate skeletons. A. Rev. Earth planet. Sciences 2: 77–79Google Scholar
  7. Clarke, A. (1983). Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr. mar. Biol. A. Rev. 21: 341–453Google Scholar
  8. Clarke, A. (1988). Seasonality in the Antarctic marine environment. Comp. Biochem. Physiol. 90 B: 461–473Google Scholar
  9. Clarke, A., Holmes, L. J., White, M. G. (1988). The annual cycle of temperature, chlorophyll and major nutrients at Signy Island, South Orkney Islands, 1969–82. Br. Antarct. Surv. Bull. 80: 65–86Google Scholar
  10. Clarke, A., North, A. W. (1991). Is the growth of polar fish limited by temperature? In: di Prisco, G., Maresca, B., Tota, B. (eds.) Biology of Antarctic fishes. Springer-Verlag, Berlin, p. 54–69Google Scholar
  11. Davenport, J. (1989). Feeding, oxygen uptake, ventilation rate and shell growth in the Antarctic protobranch bivalve mollusc Yoldia eightsi (Courthony). In: Heywood, R. B. (ed.) Proceedings of the British Antarctic Survey Antarctic Special Topic Award Scheme Symposium. British Antarctic Survey, Cambridge, p. 57–63Google Scholar
  12. Deith, M. R. (1985). The composition of tidally deposited growth lines in the shell of the edible cockle, Cerastoderma edule. J. mar. biol. Ass. U.K. 65: 573–581Google Scholar
  13. Dell, R. K. (1990). Antarctic Mollusca. Bull. R. Soc. N.Z. 27: 1–311Google Scholar
  14. Dillaman, R. M., Ford, S. E. (1982). Measurement of calcium carbonate deposition in molluscs by controlled etching of radioactively labelled shells. Mar. Biol. 66: 133–143Google Scholar
  15. Dodd, J. R. (1964). Environmentally controlled variation in the shell structure of a pelecypod species. J. Paleont. 38: 1065–1071Google Scholar
  16. Everson, I. (1977). Antarctic marine secondary production and the phenomenon of cold adaptation. Phil. Trans. R. Soc. (Ser. B) 110: 55–66Google Scholar
  17. Gage, J., Tyler, P. A. (1992). Deep sea biology. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  18. Gilbert, M. A. (1973). Growth rate, longevity and maximum size of Macoma balthica (L.). Biol. Bull. mar. biol. Lab., Woods Hole 145: 119–126Google Scholar
  19. Gilbert, N. S. (1991). Microphytobenthic seasonality in near-shore marine sediments at Signy Island, South Orkney Islands, Antarctica. Estuar., cstl Shelf Science 33: 89–104Google Scholar
  20. Gilkinson, K. D., Hutchings, J. A., Oshel, P. E., Haedrich, R. L. (1986). Shell microstructure and observations on internal banding patterns in the bivalves Yoldia thraciaeformis Storer, 1838, and Nucula pernula Müller, 1779 (Nuculanidae), from a deepsea environment. Veliger 29: 70–77Google Scholar
  21. Gordon, J., Carriker, M. R. (1978). Growth lines in a bivalve mollusk: subdaily patterns and dissolution of the shell. Science, N. Y. 202: 519–521Google Scholar
  22. Harrington, R. J. (1986). Growth patterns within the genus Protothaca (Bivalvia: Veneridae) from the Gulf of Alaska to Panama: paleotemperatures, paleobiogeography and paleolatitudes. PhD thesis. University of California, Santa BarbaraGoogle Scholar
  23. Jodrey, L. H. (1953). Studies on shell formation. III. Measurement of calcium deposition in shell and calcium turnover in mantle tissue using the mantle-shell preparation and Ca45. Biol. Bull. mar. biol. Lab., Woods Hole 104: 398–407Google Scholar
  24. Jones, D. S., Thompson, I., Ambrose, W. G. (1978). Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracae), based on internal growth lines in shell cross-sections. Mar. Biol. 47: 63–70Google Scholar
  25. Lowenstam, H. A. (1954a). Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc. natn. Acad. Sci. U.S.A. 40: 39–48Google Scholar
  26. Lowenstam, H. A. (1954b). Factors effecting the aragonite:calcite ratios in carbonate secreting marine organisms. J. Geol. 63: 284–322Google Scholar
  27. Lutz, R. A. (1976). Annual growth patterns in the inner shell layer of Mytilus edulis L. J mar. biol. Ass. U.K. 56: 723–731Google Scholar
  28. Luxmoore, R. A. (1982). Moulting and growth in serolid isopods. J. exp. mar. Biol. Ecol. 56: 63–85Google Scholar
  29. MacClintock, C. (1967). Shell structure of patelloid and blerophontoid gastropods (Mollusca). Bull. Peabody Mus. nat. Hist. 22: 1–140Google Scholar
  30. MacDonald, B. A., Thomas, M. L. H. (1980). Age determination in the soft-shell clam Mya arenaria using shell internal growth lines. Mar. Biol. 58: 105–109Google Scholar
  31. Nicol, D. (1967). Some characteristics of cold water marine pelecypods. J. Paleont. 41: 1330–1340Google Scholar
  32. Pannella, G., MacClintock, C. (1968). Biological and environmental rhythms reflected in molluscan shell growth. J. Paleont. 42: (Suppl. to No. 5, Mem. 2) 64–80Google Scholar
  33. Peck, L. S., Bullough, L. K. (1993). Growth and population structure in the infaunal bivalve Yoldia eightsi in relation to iceberg activity at Signy Island, Antarctica. Mar. Biol. 117: 235–241Google Scholar
  34. Picken, G. B. (1980). The distribution, growth and reproduction of the Antarctic limpet Nacella (Patiniger) concinna (Strebel, 1908). J. exp. mar. Biol. Ecol. 42: 71–85Google Scholar
  35. Rabarts, I. W. (1970). Physiological aspects of the ecology of some Antarctic lamellibranchs. British Antarctic Survey Base Report N9b/1970/H. British Antarctic Survey, Cambridge, EnglandGoogle Scholar
  36. Rabarts, I. W., Whybrow, S. (1979). A revision of the Antarctic and sub-Antarctic members of the genus Yoldia Müller, 1842 (Bivalvia: Nuculanidae). J. nat. Hist. 13: 161–183Google Scholar
  37. Ralph, R., Maxwell, J. G. H. (1977). Growth of two Antarctic lamellibranchs: Adamussium colbecki and Laternula elliptica. Mar. Biol. 42: 171–175Google Scholar
  38. Rhoads, D. C., Lutz, R. A. (eds.). (1980). Skeletal growth of aquatic organisms. Plenum Press, New YorkGoogle Scholar
  39. Rhoads, D. C., Panella, G. (1970). The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia 3: 143–161Google Scholar
  40. Richardson, C. A. (1987). Microgrowth patterns in the shell of the Maylaysian cockle Anadara granosa (L.) and their use in age determination. J. exp. mar. Biol. Ecol. 111: 77–98Google Scholar
  41. Richardson, C. A. (1988). Exogenous and endogenous rhythms of band formation in the shell of the clam Tapes philippinarum (Adams et Reeve, 1850)Google Scholar
  42. Richardson, C. A., Crisp, D. J., Runham, N. W. (1980a). Factors influencing shell growth in Cerastoderma edule. Proc. R. Soc. (Ser. B) 120: 513–531Google Scholar
  43. Richardson, C. A., Crisp, D. J., Runham, N. W. (1981). Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule. J. mar. biol. Ass. U. K. 61: 465–476Google Scholar
  44. Richardson, C. A., Crisp, D. J., Runham, N. W., Gruffydd, L.D. (1989b). The use of tidal growth bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-Arctic conditions. J. mar. biol. Ass. U. K. 60: 977–989Google Scholar
  45. Shabica, S. V. (1976). The natural history of the Antarctic limpet Patinigera polaris (Hombron & Jacquinot). PhD thesis. University of Oregon, Corvallis, OregonGoogle Scholar
  46. Taylor, J. D., Kennedy, W. J., Hall, A. (1969). The shell structure and mineralogy of the Bivalvia. Introduction. Nuclacea-Trigonacea. Bull. Br. Mus. nat. Hist. (D: Zool.) (Suppl.) 3: 1–125Google Scholar
  47. Theisen, B. F. (1973). The growth of Mytilus edulis L. (Bivalvia) from Disko and Thule district, Greenland. Ophelia 12: 59–77Google Scholar
  48. Thompson, I., Jones, D. S., Dreibelbis, D. (1980). Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Mar. Biol. 57: 25–34Google Scholar
  49. Turekian, K., Cochran, J. K., Kharkar, D., Cerrato, R., Vaisnys, J. R., Sanders, H., Grassle, J. F., Allen, J. (1975). Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proc. natn. Acad. Sci. U.S.A. 72: 2829–2832Google Scholar
  50. Weymouth, F. W., McMillan, J. C., Rich, W. H. (1931). Latitude and relative growth in the razor clam Siliqua patula. J. exp. Biol. 8: 228–641Google Scholar
  51. Wheeler, A. P., Blackwelder, P. L., Wilbur, K. M. (1975). Shell growth in the Scallop Argopecten irradians. I. Isotope incorporation with reference to diurnal growth. Biol. Bull. mar. biol. Lab., Woods Hole 148: 472–482Google Scholar
  52. Wilbur, K. M., Jodrey, L. H. (1952). Studies on shell formation. I. Measurement of the rate of shell formation using 45Ca. Biol. Bull. mar. biol. Lab., Woods Hole 103: 269–276Google Scholar
  53. Yonge, C. M. (1939). The prorobranchiate Mollusca; a functional interpretation of their structure and evolution. Phil. Trans. R. Soc. (Ser. B) 230: 79–147Google Scholar
  54. Zischke, J. A., Watabe, N., Wilbur, K. M. (1970). Studies on shell formation: measurement of growth in the gastropod Ampullarius glaucus. Malacologia 10: 423–439Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Conor P. Nolan
    • 1
  • Andrew Clarke
    • 1
  1. 1.British Antarctic SurveyCambridgeEngland

Personalised recommendations