Advertisement

Oecologia

, Volume 29, Issue 1, pp 43–61 | Cite as

Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of Northern Germany

I. Biomass distribution and daily CO2 uptake in different crown layers
  • E.-D. Schulze
  • M.I. Fuchs
  • M. Fuchs
Article

Summary

Biomass distribution and diurnal CO2 uptake under natural conditions were investigated on Picea abies in a mountainous climate (Solling, Northwest Germany). Spruce has a remarkable variability in leaf characteristics. Even on a single branch in the lower sun crown, needle dry weight and surface area change considerably from the branch base to the tip and accoring to exposure. Only about 18% of the total biomass of the tree was current year's growth, about 40% of the needles were 4 years and older reaching a maximal age of 12 years. The main growing zone was at the border of upper shade and lower sun crown and the main accumulation of dry weight was at a greater tree height than was observed for maximal growth of needle numbers or surface area. The annual, new growth shifted toward the upper sun crown. Maximal daily CO2 uptake was highest in the lower sun crown on days with variable cloud cover when temperatures were moderate and water vapor pressure deficits were low. Also the annual CO2 uptake was highest in the lower sun crown, where 4-year-old and older needles contributed about 35% to the annual CO2 uptake of the tree. Current year growth contributed about 15% of the total CO2 gain. The upper and lower sun crowns produce about 70% of the total carbon gain. The carbon balance of spruce and the distribution of the production process in relation to needle age and crown level are discussed.

Keywords

Vapor Pressure Deficit Water Vapor Pressure Mountainous Climate Surface Area Change Water Vapor Pressure Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner, A.: Ecological significance of the vertical energy distribution in plant stands. Resources Naturelles 5, 367–374, UNESCO Paris (1967)Google Scholar
  2. Baumgartner, A.: Meteorological approach to the exchange of CO2 between the atmosphere and vegetation, particularly forest stands. Photosynthetica 3, 127–149 (1969)Google Scholar
  3. Burger, H.: Kronenaufbau gleichaltriger Nadelholzbestände. Mitt. Schweiz. Anst. f. d. forstl. Versuchswesen 21, 5–56 (1939)Google Scholar
  4. Burger, H.: Holz, Blattmenge und Zuwachs. V. Mitteilung: Fichten und Föhren verschiedener Herkunft auf verschiedenen Kulturorten. Mitt. Schweiz. Anst. f. d. forstl. Versuchswesen 22, 10–62 (1942)Google Scholar
  5. Denmead, O.T., McIlroy, I.C.: Measurement of carbon dioxide exchange in the field. In: Plant photosynthetic production (Z. Šesták, J. Čatský, P.G. Jarvis, eds.), Mannual of methods, pp. 467–514. The Hague: Junk 1971Google Scholar
  6. Droste zu Hülshoff, B.v.: Vorläufige Untersuchungsergebnisse über die Erfassung oberirdischer Baumorgane an einer 76-jährigen vorherrschenden Fichte im Ebersberger Forst bei München. Forstwiss. Zbl. 87, 321–384 (1968)Google Scholar
  7. Droste zu Hülshoff, B.v.: Struktur und Biomasse eines Fichtenbestandes aufgrund einer Dimensionsanalyse an oberirdischen Baumorganen. Diss., Univ. München (1969)Google Scholar
  8. Droste zu Hülshoff, B.v.: Struktur, Biomasse und Zuwachs eines älteren Fichtenbestandes. Forstwiss. Zbl. 89, 162–171 (1970)Google Scholar
  9. Ellenberg, H.: Introductory survey. In: Integrated experimental ecology (H. Ellenberg, ed.), Ecological studies, Vol. 2 pp. 1–15. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  10. Fuchs, M.: Die Wirkung von Licht, Temperatur und Luftfeuchte auf die Nettophotosynthese der Fichte im Solling. Diplomarbeit, Würzburg (1974)Google Scholar
  11. Fuchs, M.I.: Untersuchungen zur Biomasse und photosynthetischen Stoffproduktion an einer Fichte im Solling. Diplomarbeit, Univ. Würzburg (1974)Google Scholar
  12. Gholz, H.L., Fitz, F.K., Waring, R.H.: Leaf area differences associated with old-growth forest communities in the West Oregon Cascades. Canad. J. Forest Res. 6, 49–57 (1976)Google Scholar
  13. Grace, J., Malcolm, D.C., Bradbury, I.K.: The effect of wind and humidity on leaf diffusive resistance in sitka spruce seedlings. J. appl. Ecol. 12, 931–940 (1975)Google Scholar
  14. Guerrero, F.P., Williams, W.A.: Influence of temperature on the growth of Erodium botrys and Trifolium subterraneum. Crop Science 15, 553–556 (1975)Google Scholar
  15. Heller, H.: Estimation of biomass of forests. In: Integral experimental ecology (H. Ellenberg, ed.), Ecological studies, Vol., 2, pp. 45–47. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  16. Higginbotham, K.O.: The influence of canopy position and the age of leaf tissue on growth and photosynthesis in Pinus taeda. Ph. D. Thesis. Duke Univ. Durham, N.C. (1974)Google Scholar
  17. Hinckley, T.M., Ritchie, G.A.: Within-crown patterns of transpiration, water stress, and stomatal activity in Abies amabilis. Forest Science 16, 490–492 (1970)Google Scholar
  18. Jarvis, P.G., James, G.B., Landsberg, J.J.: Coniferous forests. In: Vegetation and the atmosphere (J.L. Monteith, ed.), Vol. 2, pp. 171–240. New York-San Francisco-London: Academic Press 1976Google Scholar
  19. Jeffree, C.E., Johnson, R.P.C., Jarvis, P.G.: Epicuticular wax in the stomatal antichamber of sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta (Berl.) 98, 1–10 (1971)Google Scholar
  20. Larcher, W.: The effect of environmental and physiological variables on the carbon dioxide exchange of trees. Photosynthetica 3, 167–198 (1969)Google Scholar
  21. Ludlow, M.M., Jarvis, P.G.: Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). I. General characteristics. J. appl. Ecol. 8, 925–953 (1971)Google Scholar
  22. Mitscherlich, G., Gadow, K.v.: Über den Zuwachsverlust bei der Ästung von Nadelbäumen. Allg. Forst- u. Jagdztg. 139, 175–184 (1968)Google Scholar
  23. Mokroß, R.: Einfluß tiefer Temperaturen auf den CO2-Gaswechsel der Fichte (Picea abies L.) im Winter. Diplomarbeit, Univ. Göttingen (1973)Google Scholar
  24. Neilson, R.E., Ludlow, M.M., Jarvis, P.G.: Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). II. Responses to temperature. J. appl. Ecol. 9, 721–745 (1972)Google Scholar
  25. Norman, J.M., Jarvis, P.G.: Photosynthesis in sitka spruce (Picea sitchensis (Bong.) Carr.). III. Measurements of canopy structure and interception of radiation. J. appl. Ecol. 11, 375–398 (1974)Google Scholar
  26. Peacock, J.M.: Temperature and leaf growth in four grass species. J. appl Ecol. 13, 225–232 (1976)Google Scholar
  27. Pisek, A., Tranquillini, W.: Assimilation und Kohlenstoffhaushalt in der Krone von Fichten —(Picea excelsa Link) und Rotbuchenbäumen (Fagus silvatica L.). Flora 141, 237–270 (1954)Google Scholar
  28. Polster, H.: Die physiologischen Grundlagen der Stofferzeugung im Wald. BLV, München (1950)Google Scholar
  29. Reemtsma, J.B.: Untersuchungen über den Nährstoffgehalt der Nadeln verschiedenen Alters an Fichte und anderen Nadelbaumarten. Flora, Abt. B 156, 105–121 (1967)Google Scholar
  30. Reiscosky, D.A., Hanover, J.W.: Seasonal changes in leaf surface waxes of Picea pungens. Amer. J. Bot. 63, 449–456 (1976)Google Scholar
  31. Runge, M.: Energieumsätze in den Biozönosen terrestrischer Ökosysteme. Scripta Geobotanica, Bd. 4. Göttingen: Goltze 1973Google Scholar
  32. Ruetz, W.F.: Seasonal pattern of CO2 exchange of Festuca rubra L. in a montane meadow community in northern Germany. Oecologia (Berl.) 13, 247–269 (1973)Google Scholar
  33. Salo, D.J.: Factors affecting photosynthesis in Douglas-fir. Dissertation, Univ. Seattle (1974)Google Scholar
  34. Schöpfer, W.: Beiträge zur Erfassung des Assimilationsapparates der Fichte. Schriftenreihe der Landesforstverwaltung Baden-Württemberg 10, 1–127 (1961)Google Scholar
  35. Schuck, H.J.: Quantitative Variation der Wachsauflage und der cuticulären Kohlenwasserstoffe bei Picea abies-Nadeln. Flora 165, 303–314 (1976)Google Scholar
  36. Schulze, E.-D.: Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159, 177–232 (1970)Google Scholar
  37. Schulze, E.-D.: Die Wirkung von Licht und Temperatur auf den CO2-Gaswechsel verschiedener Lebensformen aus der Krautschicht eines montanen Buchenwaldes. Oecologia (Berl.) 9, 235–258 (1972)Google Scholar
  38. Schulze, E.-D., Lange, O.L., Lembke, G.: A digital registration system for net photosynthesis and transpiration measurments in the field and an associated analysis of errors. Oecologia (Berl.) 10, 151–166 (1972)Google Scholar
  39. Tranquillini, W.: Einfluß des Windes auf den Gaswechsel der Pflanzen. Umschau in Wissenschaft und Technik 26, 860–861 (1971)Google Scholar
  40. Watts, H.C.: Leaf extension in Zea mays. II. Leaf extension in response to independent variation of the temperature of the apical meristem of the air around the leaves and of the root zone. J. exp. Bot. 23, 713–721 (1972)Google Scholar
  41. Webb, W.L.: Dynamics of photoassimilated carbon in Douglas fir seedlings. Plant Physiol. 56, 455–459 (1975)Google Scholar
  42. Woodmann, J.N.: Variation of net photosynthesis within the crown of a large forest grown conifer. Photosynthetica 5, 50–54 (1971)Google Scholar
  43. Zelawski, W., Kucharska, J., Kinelska, J.: Relationship between dry matter production and carbon dioxide absorption in seedlings of Scots pine (Pinus silvestris L.) in their second vegetation period. Acta Societalis Botanicorum Poloniae 15, 243–256 (1971)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E.-D. Schulze
    • 1
  • M.I. Fuchs
    • 1
  • M. Fuchs
    • 1
  1. 1.Lehrstuhl für Pflanzenökologie der Universität BayreuthBayreuthFederal Republic of Germany

Personalised recommendations