, Volume 42, Issue 2, pp 123–138 | Cite as

Metabolic responses to temperature change in a tropical freshwater copepod (Mesocyclops brasilianus) and their adaptive significance

  • Robert W. Epp
  • William M. LewisJr.


Metabolic rates of Mesocyclops brasilianus from Lake Valencia, Venezuela, were determined at several temperatures spanning the environmental range (22–28° C). The QO2's (oxygen consumption per unit weight) of all Mesocyclops stages from Lake Valencia are higher than most but not all QO2's from temperate copepod species that have been studied. The QO2 is essentially static through naupliar development and shows a sudden jump between N6 and CI, which probably results from the major change in morphology and behavior at this point in the life history. QO2 declines steadily between CI and adult stages. Acclimated copepodite and adult Mesocyclops show a decreasing metabolic rate with increasing temperature (i.e. Q10< 1.0) over the temperature range 26–28° C. This is the range of temperatures normally encountered during the daily vertical migration when the lake is thermally stratified (April–November). Since vertical migration would result in a compromise between a fully acclimated and an acute response, a nearly constant metabolic rate or a slight decline in metabolic rate in the warmer water would be expected in field populations. The results thus show that the metabolic rate of Mesocyclops is not reduced when it moves into deeper (cooler) water, as would be predicted by certain energy-based hypotheses that have been used to explain vertical migration. In contrast to the low Q10's between 26 and 28° C, copepodites and adults have very high Q10 values in the range 22–26° C. This indicates an adaptive decrease in metabolic rate which is thermally programmed to coincide with the cooler temperatures that are encountered during the mixing season (December–March), when a drastic change in ecological conditions occurs in the lake.

Nauplii show evidence of the same seasonal response but without the superimposed plateau at high temperatures, which they would not need because they are weak migrators. Nauplii show a plateau at the lowest temperatures, however, which suggests that a fixed metabolic reduction occurs at the onset of mixing and metabolism is not altered thereafter with declining temperature.

The change in QO2 with temperature generally supports the hypothesis that all Mesocyclops stages are adapted to hold a high, constant metabolic rate through the diel cycle but experience a seasonal reduction in metabolic rate in response to major ecological changes in the lake at the time of seasonal mixing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bainbridge, R.: Migrations. In: The Physiology of the Crustacea, Vol. II. (T.H. Waterman, ed), 681 pp. New York: Academic Press 1961Google Scholar
  2. Begg, G.W.: The relationship between the diurnal movements of some of the zooplankton and sardine Limnothrissa miodon in Lake Kariba, Rhodesia. Limnol. Oceanogr. 21, 529–539 (1976)Google Scholar
  3. Belehradek, J.: Temperature and living matter. Protoplasma-monogr., 8 (1955)Google Scholar
  4. Bottrell, H.H., Duncan, A., Gliwicz, Z.M., Grygierek, E., Herzig, A., Hilbricht-Ilkowska, A., Kurasawa, H., Larson, P., Weglenska, T.: A review of some of the problems in zooplankton production studies. Norw. J. Zool., 24, 419–456 (1977)Google Scholar
  5. Brody, S.: Bioenergetics and growth with special reference to the efficiency complex in domestic animals. 1023 pp. New York: Reinhold Press 1945Google Scholar
  6. Bullock, T.H.: Compensation for temperature in the activity and metabolism of poikilotherms. Biol. Rev. 30, 311–342 (1955)Google Scholar
  7. Cipollo, M.N., De Carvolho, M.A. Juliano: Levantamento de Calanoida e cyclopoida das aquas da regiao do Guam. Pap. Avulsos Zool. 27, 95–110 (1973)Google Scholar
  8. Coker, R.E.: Copepods of the genus Mesocyclops. Rev. Chilena His. Nat. Pura y Aplicada. 48, 107–109 (1944)Google Scholar
  9. Comita, G.W.: The energy budget of Diaptomus siciloides Lilljeborg. Verh. Int. Ver. Limnol. 15, 646–653 (1964)Google Scholar
  10. Comita, G.W. Oxygen consumption in Diaptomus. Limnol. Oceanogr. 13, 51–57 (1968)Google Scholar
  11. Conover, R.J.: Regional and seasonal variation in the respiratory rate of marine copepods. Limnol. Oceanogr. 4, 259–268 (1959)Google Scholar
  12. Duval, W.S., Geen, G.H.: Diel feeding andrespiration patterns in zooplankton. Limnol. Oceanogr. 21, 823–829 (1976)Google Scholar
  13. Enright, J.T.: Diurnal vertical migration: Adaptive significance and timing. Part I. Selective advantage, a metabolic model. Limnol. Oceanogr. 22, 856–872 (1977)Google Scholar
  14. Enright, J.T., Honegger, H.W.: Diurnal vertical migration: Adaptive significance. Part II. Test of the model: details of timing. Limnol. Oceanogr. 22, 873–887 (1977)Google Scholar
  15. Frydenberg, O., Zeuthen, E.: Oxygen consumption and carbon dioxide output relatedto the mitotic rhythm in the cleaving eggs of Dendraster excentricus and Urechis caupo. C.r. Trav. Lab. Carls. 31, 423–455 (1960)Google Scholar
  16. Gauld, D.T., Raymond, J.E.G.: The respiration of some planktonic copepods. II. The effects of temperature. J. Mar. Biol. Assn. U.K. 20, 1–27 (1953)Google Scholar
  17. Gerritsen, J.: Instar-specific swimming patterns and predation of planktonic copepods. Verh. Int. Ver. Limnol. 20, 2531–2536 (1979)Google Scholar
  18. Glick, D.: Quantitative techniques of Histo- and Cyto Chemistry. 531 pp. New York. Interscience 1949Google Scholar
  19. Green, J.D.: Feeding and respiration in the New Zealand copepod Calamoecia lucasi Brady. Oecologia 21, 345–358 (1975)Google Scholar
  20. Hairston, N.G. Jr.: Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proc. Nat. Acad. Sci. U.S. 73, 971–974 (1976)Google Scholar
  21. Hemmingsen, A.M.: The relation of standard (basal) metabolism to total fresh weight of living organisms. Rept. Steno. Mem. Hosp. and Nord. Insulin Lab. 4, 7–48 (1950)Google Scholar
  22. Hemmingsen, A.M.: Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rept. Steno. Mem. Hosp. and Insulin Lab. 9, 1–111 (1960)Google Scholar
  23. Holter, H.: Techniques of the Cartesian diver. C.r. Trav. Lab. Carls., Ser. Chim. 24, 399–478 (1943)Google Scholar
  24. Holter, H.: The Cartesian diver. In: General Cytochemical Methods (J.F. Danielli, ed.), pp. 93–129. New York-London: Academic Press 1961Google Scholar
  25. Hutchinson, G.E.: A Treatise on Limnology, Vol.2, An Introduction to Lake Biology and the Limnoplankton. 1015 pp. New York: Wiley 1967Google Scholar
  26. Kiefer, F.: Susswasser Copepoden aus Brasilian. Zool. Anz. 105, 38–43 (1933)Google Scholar
  27. Kleiber, M.: The fire of life. An introduction to animal energetics. 454 pp. New York: Wiley 1961Google Scholar
  28. Klekowski, R.Z.: Cartesian diver microrespirometry for aquatic animals. Pol. Arch. Hydrobiol. 18, 93–114 (1971a)Google Scholar
  29. Klekowski, R.Z.: Cartesian diver microrespirometry. In: Secondary productivity in fresh waters (W.T. Edmondson and G.G. Winberg, eds.), pp. 290–295. Oxford: Blackwell 1971bGoogle Scholar
  30. Klekowski, R.Z.: Cartesian diver microrespirometry for terrestrial animals. In: Methods for ecological energetics (W. Grodenski, R.Z. Klekowski, and A. Duncan, eds.), pp. 201–211. Oxford: Blackwell 1975Google Scholar
  31. Klekowski, R.Z., Duncan, A.: Parameters of an energy budget. In: Methods for ecological energetics (W. Grodinski, R.Z. Klekowski and A. Duncan, eds.) pp. 97–148, 1975Google Scholar
  32. Klekowski, R.Z., Shushkina, E.A.: Ernährung, Atmung, Wachstum und Energie Umformung in Macrocyclops albidus (Jurine). Ver. Int. Ver. Limnol. 16, 399–418 (1966)Google Scholar
  33. Lewis, W.M. Jr.: The thermal regime of Lake Lanao (Philippines) and its theoretical implications for tropical lakes. Limnol. Oceanogr. 18, 220–217 (1973)Google Scholar
  34. Lewis, W.M. Jr.: Feeding selectivity of a tropical Chaoborus population. Freshwat. Biol. 7, 311–325 (1977)Google Scholar
  35. Lewis, W.M. Jr.: Dynamics and succession of the phytoplankton in a tropical lake. J. Ecol. 66, 849–880 (1978)Google Scholar
  36. Lewis, W.M. Jr.: Zooplankton community analysis. Berlin-Heidelberg-New York: Springer-Verlag (1979)Google Scholar
  37. Lewis, W.M. Jr., Weibezahn, F.H.: Chemistry, energy flow and community structure in some Venezuelan freshwaters. Arch. Hydrobiol., Suppl. 50, 145–207 (1976)Google Scholar
  38. Lock, A.R., McLaren, I.A.: The effects of varying and constant temperatures on the size of marine copepods. Limnol. Oceanogr. 15, 638–640 (1970)Google Scholar
  39. Marshall, S.M., Nicholls, A.G., Orr, A.P.: On the biology of Calanus finmarchicus. Oxygen consumption in relation to environmental conditions. J. Mar. Biol. Assn. U.K. 20, 1–27 (1935)Google Scholar
  40. Mauchline, J., Fisher, T.R.: The biology of euphasiids. In: Advances in marine biology (F.S. Russel and C.M. Younge, eds.), pp. 1–145. London: Academic Press 1969Google Scholar
  41. McLaren, I.A.: Effects of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd. Canada 20, 685–727 (1963)Google Scholar
  42. McLaren, I.A.: Demographic strategy of vertical migration by a marine copepod. Am. Nat. 108, 91–102 (1974)Google Scholar
  43. Moshiri, G.A., Cummins, K.W., Costa, R.R.: Respiratory energy expenditure by the predaceous zooplankter Leptodora kindtii (Focke). Limnol. Oceanogr. 14, 475–484 (1969)Google Scholar
  44. Nival, P., Malara, G., Charra, R., Palazzoli, I., Nival, S.: Étude de la respiration et de l'excrétion de queques copépodes planctoniques (Crustacea) dans la zone de rémontee d'eau profunde des côtes Marocaines. J. Exp. Mar. Biol. Ecol. 15, 231–260 (1974)Google Scholar
  45. Precht, H., Christophersen, J., Hersel, H.: Temperatur und Leben. 514 pp. Hamburg: Springer Verlag 1955Google Scholar
  46. Prosser, C.L.: Comparative animal physiology, 3rd ed., 356 pp. Philadelphia: Saunders 1973Google Scholar
  47. Rao, K.P.: Rate of water propulsion in Mytilus californianus as a function of latitude. Biol. Bull. 104, 171–181 (1953)Google Scholar
  48. Rao, K.P., Bullock, T.H.: Q10 as a function of size and habitat temperature in poikilotherms. Am. Nat. 88, 33–44 (1954)Google Scholar
  49. Rhode, W.: Environmental requirements of freshwater algae. Symbol. Bot. Upsal. 10, 1–149 (1948)Google Scholar
  50. Richman, S.: Energy transformation studies on Diaptomus oregonensis Verh. Int. Ver. Limnol. 16, 654–659 (1964)Google Scholar
  51. Roberts, J.L.: Studies of the thermal acclimitization in the lined shore crab, Pachygraspsus crassipes Randall. Proc. XIXth Int. Physiol. Cong. p. 706 (1953)Google Scholar
  52. Ruttner, F.: Beobachtungen über die tägliche Vertikalwanderung des Planktons in tropischen Seen. Arch. Hydrobiol. 40, 474–492 (1943)Google Scholar
  53. Rzoska, J.: Observation on zooplankton distribution in a tropical river dam-basin (Gebel Aulia, White Nile, Sudan). J. Animal Ecol. 37, 185–198 (1968)Google Scholar
  54. Schlieper, C.: Temperaturbezogene Regulationen des Grundumsatzes bei Wechselwarmen Tieren. Biol. ZBL. 69, 216–225 (1950)Google Scholar
  55. Scholander, P.F., Flagg, W., Walters, V., Irving, L.: Climatic adaptations in arctic and tropical poikilotherms. Physiol. Zool. 26, 67–90 (1953)Google Scholar
  56. Siefken, M., Armitage, K.B.: Seasonal variation in metabolism and organic nutrients in three Diaptomus (Crustacea: Copepoda). Comp. Biochem. Physiol. 24, 591–609 (1968)Google Scholar
  57. Sitaramaiah, P.: Water, nitrogen and caloric value of freshwater organisms. J. du Conseil Int. pour l'exploration de la Mer. 31, 27–30 (1967)Google Scholar
  58. Snedecor, G.W., Cochran, W.G.: Statistical methods (6th ed.). Ames Iowa: Iowa State University Press 1976Google Scholar
  59. Swift, M.C.: Energetics of vertical migration in Chaoborus trivittatus larvae. Ecology 57 (5), 900–915 (1976)Google Scholar
  60. Talling, J.F.: The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Int. Rev. Ges. Hydrobiol. 51, 545–621 (1966)Google Scholar
  61. Vernberg, F.J.: Temperature effects on invertebrate animals. In: Temperature-Its measurement and control in science and industry. pp. 135–141. New York: Reinhold 1963Google Scholar
  62. Winberg, G.G.: Intensivnost' obmena i razmery rakoobrasnyh (The intensity of metabolism and body size in crustacea) Z. Obshch. Biol. 11, 367–380 (1950)Google Scholar
  63. Winberg, G.G.: O zavisimosti intensivnosti obmena clenistonogih ot veliciny tela (On dependence of metabolic rate on body dimension in Arthropods) Uc. Zap. Beloruss. gos. Univer., Ser. Biol. 26, 243–254 (1956)Google Scholar
  64. Zaret, T.W., Suffern, J.S.: Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21, 804–813 (1976)Google Scholar
  65. Zeuthen, E.: A Cartesian diver micro-respirometer with a gas volume of 0.1 μl. Respiration measurement with an experimental error of 2×10-5 μl. C.r. Trav. Lab. Carls., Ser. Chim. 24, 479–518 (1943)Google Scholar
  66. Zeuthen, E.: Body size and metabolic rate in the animal kingdom with special regards to the marine micro-fauna. C.r. Lab. Carls., Ser. Chim. 26, 17–161 (1947)Google Scholar
  67. Zeuthen, E.: Microgasometric methods. Cartesian divers. In: Int. Congr. Histo-Cytochem. (2) Frankfurt/Main, pp. 70–80. Berlin: Springer Verlag 1964Google Scholar
  68. Zeuthen, E.: Rate of living as related to body size in organisms. Pol. Arch. Hydrobio. 17, 21–30 (1971)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Robert W. Epp
    • 1
  • William M. LewisJr.
    • 1
  1. 1.Department of Environmental, Population and Organismic BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations