Biological Cybernetics

, Volume 23, Issue 3, pp 171–180 | Cite as

Visual pattern discrimination as an element of the fly's orientation behaviour

Article

Summary

The visually guided orientation behaviour of stationarily flying Musca domestica (females) has been investigated. Under such conditions, the flight activity does not influence the visual stimulus (“openloop”) and the tendency of a fly to orientate towards some visual object can be recorded as a yaw torque reaction (orientation response).—Orientation responses to flickering stripes reveal two different mechanisms of visual integration, namely a local flicker detecting mechanism and a specific kind of dynamic lateral interactions (Figs. 3, 5). The lateral interactions are mediated by a field of interconnections of receptors which are separated by at least 4 to 6 vertical rows of ommatidia (Figs. 3, 8). While stimulation of not more than 3 vertical rows of ommatidia activates only flicker detection, stimuli of more than 6° width may in addition exert an excitatory or an inhibitory influence as a consequence of the associated nonlinear interactions (Figs. 5, 7). The relevance of these lateral interactions for tracking and chasing behaviour is discussed. It is suggested that the fly's visual pattern discrimination rests essentially on these lateral interactions.

Keywords

Torque Visual Stimulus Specific Kind Nonlinear Interaction Visual Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson,A.: The ability of honey bees to generalise visual stimuli. In: Wehner, R. (Ed.): Information Processing in the Visual System of Arthropods, pp. 207–212. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  2. Arnett,D.W.: Spatial and temporal integration properties of units in first optic ganglion of Dipterans. J. Neurophysiol. 35, 429–444 (1972)Google Scholar
  3. Bishop,L.G., Keehn,D.G.: Neural correlates of the optomotor response in the fly. Kybernetik 3, 288–295 (1967)Google Scholar
  4. Buchner,E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics, in press (1976)Google Scholar
  5. Collett,T.S.: Visual neurones in the anterior optic tract of the privet hawk moth. J. comp. Physiol. 78, 396–433 (1972)Google Scholar
  6. Collett,T.S., Blest,A.D.: Binocular, directionally selective neurones, possibly involved in the optomotor response of insects. Nature (Lond.) 212, 1330–1333 (1966)Google Scholar
  7. Cruse,H.: Versuch einer quantitativen Beschreibung des Formensehens der Honigbiene. Kybernetik 11, 185–200 (1972)Google Scholar
  8. Eskert,H.: Optomotorische Untersuchung am visuellen System der Stubenfliegen Musca domestica. Kybernetik 14 1–23 (1973)Google Scholar
  9. Fermi,G., Reichardt,W.: Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 15–28 (1963)Google Scholar
  10. Franceschini,N.: Sampling of the visual environment by the compound eye of the fly. In: Snyder,A.W., Menzel,R. (Eds.): Photoreceptor Optics, pp. 98–125. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  11. Geiger,G.: Optomotor responses of the fly Musca dom. to transient stimuli of edges and stripes. Kybernetik 16, 37–43 (1974)Google Scholar
  12. Geiger,G.: Poggio,T.: The orientation of flies towards visual patterns. Biol. Cybernetics 19, 39–54 (1975)Google Scholar
  13. Götz,K.G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964)Google Scholar
  14. Götz,K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968)Google Scholar
  15. Götz,K.G.: The optomotor equilibrium of the Drosophila navigation system. J. comp. Physiol. 99, 187–210 (1975)Google Scholar
  16. Hartline,H.K., Ratliff,F. Spatial summation of inhibitory influences in the eye of Limulus, and the mutual interaction of receptor units. J. gen. Physiol. 41, 1049–1066 (1958)Google Scholar
  17. Hassenstein,B.: Ommatidienraster und afferente Bewegungsintegration (Versuche am Rüsselkäfer Chlorophanus viridis). Z. vergl. Physiol. 33, 301–326 (1951)Google Scholar
  18. Hassenstein,B., Reichardt,W.: Systemtheoretische Analyse der Zeitreihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. 11b, 513–524 (1956)Google Scholar
  19. Hausen, K.: Funktion, Struktur und Konnektivität einiger Neurone der Lobular Plate von Calliphora eryth. Diss. Eberhard-Karls-Universität Tübingen (1976)Google Scholar
  20. Heimburger, L., Poggio, T., Reichardt, W.: A special class of non-linear interactions in the visual system of the fly. Biol. Cybernetics 21, 103–105 (1976)Google Scholar
  21. Hertz, M.: Zur Physiologie des Formen- und Bewegungssehens. Z. vergl. Physiol. 20, 430–449; 21, 579–603; 21, 604–615 (1934)Google Scholar
  22. Homann, H.: Beitrage zur Physiologie der Spinnenaugen. Z. vergl. Physiol. 7, 201–268 (1928)Google Scholar
  23. Horn, E., Wehner, R.: The mechanism of visual pattern fixation in the walking fly, Drosophila mel. J. comp. Physiol. 101, 39–56 (1975)Google Scholar
  24. Jander, R., Schweder, M.: Über das Formunterscheidungsvermögen der Schmeißfliege Calliphora eryth. Z. vergl. Physiol. 72, 186–196 (1971)Google Scholar
  25. Kien, J.: Neuronal mechanisms subserving directional selectivity in the locust optomotor system. J. comp. Physiol. 102, 337–355 (1975)Google Scholar
  26. Kirmse, W., Lässig, P.: Strukturanalogie zwischen dem System der horizontalen Blickbewegungen der Augen beim Menschen und dem System der Blickbewegungen des Kopfes bei Insekten mit Fixationsreaktionen. Biol. Zbl. 90, 175–193 (1971)Google Scholar
  27. Kirschfeld, K.: The visual system of Musca: Studies of optics, structure and function. In: Wehner, R. (Ed.): Information Processing in the Visual System of Arthropods, pp 61–74. Berlin-Heidelberg-New York: Springer (1972)Google Scholar
  28. Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969)Google Scholar
  29. Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the fly Musca. Z. Naturforsch. 29c, 95–97 (1974)Google Scholar
  30. Knight, B. W., Toyoda, J., Dodge, F.A. A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J. gen Physiol 56, 421–437 (1970)Google Scholar
  31. Kunze, P.: Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44, 656–684 (1961)Google Scholar
  32. Land, M.F.: Orientation by jumping spiders in the absence of visual feedback. J. exp. Biol. 54, 119–139 (1971)Google Scholar
  33. Land, M.F.: Head movement of flies during visually guided flight. Nature (Lond.). New Biol. 243, 299–300 (1973)Google Scholar
  34. Land, M. F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. comp. Physiol. 89, 331–357 (1974)Google Scholar
  35. Marmarelis, P.Z., McCann, G.D.: Development and application of white-noise modeling techniques for studies of insect visual nervous system. Kybernetik 12, 74–89 (1973)Google Scholar
  36. McCann, G.D., Dill, J.C.: Fundamental properties of intensity, form and motion perception in the visual nervous system of Calliphora and Musca. J. gen. Physiol. 53, 385–413 (1969)Google Scholar
  37. McCann, G.D., MacGinitie, G.F.: Optomotor response studies of insect vision. Proc. Roy. Soc. B. 163, 369–401 (1965)Google Scholar
  38. Meyer, H.: Visuelle Schlüsselreize für die Auslösung der Beutefang-handlung beim Bachläufer Velia caprai. Z. vergl. Physiol. 72, 260–297, 298–342 (1971)Google Scholar
  39. O'Shea, M., Williams, J.L.D.: The anatomy and output connection of a locust visual interneurone. J. comp. Physiol. 91, 257–266 (1974)Google Scholar
  40. Palka, J.: Moving movement detectors. Amer. Zool. 12, 497–505 (1972)Google Scholar
  41. Pick, B.: Visual flicker induces orientation behaviour in the fly Musca. Z. Naturforsch. 29c, 310–312 (1974a)Google Scholar
  42. Pick, B.: Das stationäre Orientierungsverhalten der Fliege Musca. Diss. Eberh.-Karls-Univ. Tübingen (1974b)Google Scholar
  43. Pick, B., Buchner, E.: Movement-specific wide-angle interactions in the visual system of the fly. To be submitted to Biol. Cybernetics (1976)Google Scholar
  44. Poggio, T.: Processing of visual information in insects: A theoretical characterization Biocybernetics VI. (Eds.): Drischel, H., Dettmar, P., pp. 235–243. Leipzig 1973: Fischer 1975Google Scholar
  45. Poggio, T.: Processing of visual information in flies. In: Proc. I Symp. It. Soc. Biophysics. Camogli 1973. Parma: Tipo Lito 1974Google Scholar
  46. Poggio, T., Reichardt, W.: A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185–203 (1973a)Google Scholar
  47. Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik 13, 223–227 (1973b)Google Scholar
  48. Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly (II). Quart. Rev. Biophys. in press (1976)Google Scholar
  49. Reichardt, W.: Musterinduzierte Flugorientierung. Verhaltensversuche an der Fliege Musca domestica. Naturwissenschaften 60, 122–138 (1973)Google Scholar
  50. Reichardt, W., Poggio, T.: A theory of the pattern induced flight orientation of the fly Musca domestica II. Biol. Cybernetics 18, 69–80 (1975)Google Scholar
  51. Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly (I) Quart. Rev. Biophys. in press (1976)Google Scholar
  52. Reichardt, W., Wenking, H.: Optical detection and fixation of objects by fixed flying flies. Naturwissenschaften 56, 424–425 (1969)Google Scholar
  53. Rowell, C.H.F.: The Orthopteran descending movement detector (DMD) neurons. Z. vergl. Physiol. 73, 167–194 (1971)Google Scholar
  54. Thorson, J.: Small-signal analysis of a visual reflex in the locust, I–II. Kybernetik 3, 41–66 (1966)Google Scholar
  55. Varjú, D.: Stationary and dynamic responses during visual edge fixation by walking insects. Nature (Lond.) New Biol. 255, 330–332 (1975)Google Scholar
  56. Virsik, R., Reichardt, W.: Tracking of moving objects by the fly Musca domestica. Naturwissenschaften 61, 132–133 (1974)Google Scholar
  57. Virsik, R., Reichardt, W.: Detection and tracking of moving objects by the fly Musca dom. Biol. Cybernetics in press (1976)Google Scholar
  58. Wehner, R.: Spontaneous Pattern Preferences of Drosophila. J. Insect Physiol. 18, 1531–1543 (1972)Google Scholar
  59. Wehrhahn, C.: Evidence for the role of retinal receptors R 7/8 in the oreintation behaviour of the fly. Biol. Cybernetics 21, 213–220 (1976)Google Scholar
  60. Wehrhahn, C., Reichardt, W.: Visual orientation of the fly Musca dom. towards a horizontal stripe. Naturwissenschaften 60, 203–204 (1973)Google Scholar
  61. Wehrhahn, C., Reichardt, W.: Visually induced height orientation of the fly Musca dom. Biol. Cybernetics 20, 37–50 (1975)Google Scholar
  62. Wolf, E.: Das Verhalten der Bienen gegenüber flimmernden Feldern und bewegter Objekte. Z. vergl. Physiol. 20 151–161 (1934)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • B. Pick
    • 1
  1. 1.Max-Planck-Institut für biologische Kybernetik TübingenFRG

Personalised recommendations