Probability Theory and Related Fields

, Volume 81, Issue 1, pp 29–77 | Cite as

Flots et series de Taylor stochastiques

  • Gérard Ben Arous
Article

Summary

We study the expansion of the solution of a stochastic differential equation as an (infinite) sum of iterated stochastic (Stratonovitch) integrals. This enables us to give a universal and explicit formula for any invariant diffusion on a Lie group in terms of Lie brackets, as well as a universal and explicit formula for the brownian motion on a Riemannian manifold in terms of derivatives of the curvature tensor. The first of these formulae contains, and extends to the non nilpotent case, the results of Doss [6], Sussmann [17], Yamato [18], Fliess and Normand-Cyrot [7], Krener and Lobry [19] and Kunita [11] on the representation of solutions of stochastic differential equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Azencott, R.: Formule de Taylor stochastique et développements asymptotiques d'intégrales de Feynmann. In: Azema, J., Yor, M. (eds.) Séminaire de probabilités XVI (Lect. Notes Math., vol. 921, pp. 237–284) Berlin Heidelberg New York: Springer 1982Google Scholar
  2. 2.
    Azencott, R.: Densités des diffusions en temps petit: developpements asymptotiques. In: Séminaire de probabilités XVIII. (Azema, J., Yor, M. (eds.) (Lect. Notes Math., vol. 1059, pp. 402–498). Berlin Heidelberg New York: Springer 1984Google Scholar
  3. 3.
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété riemanienne. (Lect. Notes Math., vol. 194). Berlin Heidelberg New York: Springer 1971CrossRefMATHGoogle Scholar
  4. 4.
    Bismut, J.M.: Mecanique alétoire. (Lect. Notes Math., vol. 866). Berlin Heidelberg New York: Springer 1981CrossRefGoogle Scholar
  5. 5.
    Bourbaki, N.: Groupes et algèbres de Lie, tome 2. Paris: Masson 1972MATHGoogle Scholar
  6. 6.
    Doss, H.: Lien entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincare, Novv. Ser., Sect. B 13, 99–125 (1977)MathSciNetMATHGoogle Scholar
  7. 7.
    Fliess, M., Normand-Cyrot, D.: Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K. T. Chen. In: Azema, J., Yor, M. (eds.) Seminaire de probabilités XVI (Lect. Notes Math., vol. 920, pp. 257–267). Berlin Heidelberg New York: Springer 1982CrossRefGoogle Scholar
  8. 8.
    Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139, 95–153 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ibero, M.: Intégrales stochastiques multiplicatives. Bull. Sci. Math. 100, 175–191 (1976)MathSciNetMATHGoogle Scholar
  10. 10.
    Kunita, H.: On the decomposition of solutions of stochastic differential equations. In: Williams, D. (red.) Proceedings, LMS Durham Symposium, 1980. Lect. Notes Math., vol. 851, pp. 213–284). Berlin Heidelberg New York: Springer 1981Google Scholar
  11. 11.
    Kunita, H.: On the representation of solutions of stochastic differential equations. Séminaire de probabilités XIV. In: Azema, J., Yor; M. (eds.), (Lect. Notes Math., vol. 784, pp. 282–304. Berlin Heidelberg New York: Springer 1980Google Scholar
  12. 12.
    Malliavin, P.: Parametrix trajectorielle pour un opérateur hypoelliptique et repère mobile stochastique. C.R. Acad. Sci., Paris, Ser. I 281, 241 (1975)Google Scholar
  13. 13.
    Malliavin, P.: Géométrie différentielle stochastique. Montréal: Presses de l'université de Montréal 1978MATHGoogle Scholar
  14. 14.
    Meyer, P.A.: Cours sur l'intégrale stochastique. In: Meyer, P.A. (ed.) Séminaire de probabilités X. (Lect. Notes Math., vol. 511, pp. 321–331). Berlin Heidelberg New York: Springer 1976Google Scholar
  15. 15.
    Palais, R.: A global formulation of the Lie theory on transformation groups. Mem. Am. Math. Soc. 22, 95–97 (1957)MathSciNetMATHGoogle Scholar
  16. 16.
    Platen, E.: A Taylor formula for semimartingales solving a stochastic equation. In: Third conference on stochastic differential systems, pp. 65–68. Visegrad: Hongrie 1980Google Scholar
  17. 17.
    Sussmann, H.: On the gap between deterministic and stochastic ordinary equations. Ann. Probab. 6, 19–41 (1978)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yamato, Y.: Stochastic differential equations and nilpotent Lie algebras. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 213–229 (1979)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Krener, A.J., Lobry, C.: The complexity of stochastic differential equations. Stochastics 4, 193–203 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Abraham, R., Marsden, J., Ratiu, T.: Manifolds, tensor analysis and applications. Reading, Mass.: Addison Wesley 1983MATHGoogle Scholar
  21. 21.
    Nagano, T.: Linear differential systems with singularities and applications to transitive Lie algebras. J. Math. Soc. Japan 18, 398–404 (1966)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gérard Ben Arous
    • 1
  1. 1.Centre de Mathématiques appliquéesEcole Normale SupérieureParis Cedex 05France

Personalised recommendations