Advertisement

Archive for History of Exact Sciences

, Volume 10, Issue 1–2, pp 1–40 | Cite as

The development of the theory of summable divergent series from 1880 to 1925

  • John Tucciarone
Article

Keywords

Divergent Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Additional Bibliography

  1. Andersen, A. F., Bemerkung zum Beweis des Herrn Knopp für die Äquivalenz der Cesàro- und Hölder-Summabilität. Math. Zeit., 28, 356–359 (1928).Google Scholar
  2. Borel, E., Applications de la théorie des séries divergentes sommables. Comptes Rendus, 122, 805–807 (1896).Google Scholar
  3. Borel, E., Fondements de la théorie des séries divergentes sommables. Journal de Math., (5) 2, 103–133 (1896).Google Scholar
  4. Borel, E., Le prolongement analytique et les séries sommables. Math. Annalen, 55, 74–80 (1901).Google Scholar
  5. Borel, E., Mémoire sur les séries divergentes. Ann. Sci. de l'Ecole Norm. Sup., (3) 16, 9–136 (1899).Google Scholar
  6. Bromwich, T. J., On the limits of certain infinite series and integrals. Math. Annalen, 65, 313–349 (1908).Google Scholar
  7. Buhl, A., Application du procédé de sommation de M. E. Borel aux séries trigonométriques généralisees. Comptes Rendus, 143, 445–446 (1906).Google Scholar
  8. Buhl, A., Sur de nouvelles formules de sommabilité. Bull. des Sciences, 42, 340–346 (1907).Google Scholar
  9. Buhl, A., Sur la sommabilite des séries d'une variable réélle ou complexe. Journal de Math., (6) 4, 367–393 (1908).Google Scholar
  10. Cajori, F., A History of Mathematics. New York: Macmillan 1919.Google Scholar
  11. Cantor, M., Vorlesungen über Geschichte der Mathematik. 4 Vols. Leipzig: Teubner, 1900–1908.Google Scholar
  12. Carmichael, R. D., General aspects of the theory of summable series. Bull. of the Amer. Math. Soc., 25, 97–131 (1919).Google Scholar
  13. Cauchy, A., Sur un emploi légitime des séries divergentes. Comptes Rendus, 17, 370–376 (1843).Google Scholar
  14. Cesàro, E., Contributions à la théorie des limites. Bull. des Sciences, (2) 13, 51–54 (1899).Google Scholar
  15. Cesàro, E., Nuova contribuzione ai principii fondamentali dell' aritmetics assintotica. Rendiconti Napoli, (2) 7, 208–209 (1893).Google Scholar
  16. Chapman, S., A note on the theory of summable integrals. Bull. of the Amer. Math. Soc., 18, 111–117 (1911).Google Scholar
  17. Chapman, S., On the summability of series of Legendre's functions. Math. Annalen, 72, 211–227 (1912).Google Scholar
  18. Chessin, A. S., On divergent series. Bull. of the Amer. Math. Soc., (2) 2, 72–75 (1895).Google Scholar
  19. Dienes, P., La série de Taylor sur le cercle de convergence. Comptes Rendus, 140, 489–491 (1905).Google Scholar
  20. Ford, W. B., A set of criteria for the summability of divergent series. Bull. of the Amer. Math. Soc., (2) 15, 439–444 (1909).Google Scholar
  21. Ford, W. B., On the relation between the sum formulas of Hölder and Cesàro. Amer. Journal of Math., 32, 315–326 (1910).Google Scholar
  22. Ford, W. B., A conspectus of the modern theory of divergent series. Bull. of the Amer. Math. Soc., 25, 1–15 (1918).Google Scholar
  23. Ford, W. B., Studies on Divergent Series and Summability. New York: Macmillan 1916.Google Scholar
  24. Hardy, G. H., An extension of a theorem on oscillating series. Proc. of the London Math. Soc., 12, 156–173 (1913).Google Scholar
  25. Hardy, G. H., Further researches in the theory of divergent series and integrals. Trans. of the Cambr. Phil. Soc., 21, 1–48 (1908).Google Scholar
  26. Hardy, G. H., Generalization of a theorem in the theory of divergent series. Proc. of the London Math. Soc., (2) 6, 225–264 (1908).Google Scholar
  27. Hardy, G. H., A note on divergent Fourier series. Mess. of Math., (2) 33, 137–144 (1904).Google Scholar
  28. Hardy, G. H., & S. Chapman, A general view of the theory of summable series. Quar. Journal of Math., 42, 181–215 (1911).Google Scholar
  29. Hellinger, E., & O. Toeplitz, Grundlagen für eine Theorie der unendlichen Matrizen. Göttingen Nach., 351–355 (1906).Google Scholar
  30. Hurwitz, W. A., Report on topics in the theory of divergent series. Bull. of the Amer. Math. Soc., 28, 17–36 (1922).Google Scholar
  31. James, G., On the theory of summability. Annals of Math., (2) 21, 120–127 (1919).Google Scholar
  32. Klein, F., Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Berlin, 1926.Google Scholar
  33. Knopp, K., Über das Eulersche Summierungsverfahren. Math. Zeit., 15, 226–253 (1922).Google Scholar
  34. Le Roy, E., Sur les séries divergentes et les fonctions définies par un développement de Taylor. Annales de Toulouse, (2) 2, 317–430 (1900).Google Scholar
  35. Lindelöf, E., Quelques applications d'une formule sommatoire générale. Acta Soc. Fennicae, 31, 1–46 (1902).Google Scholar
  36. Perron, O., Beitrag zur Theorie der divergenten Reihen. Math. Zeit., 6, 286–310 (1920).Google Scholar
  37. Poisson, S. D., Mémoire sur le calcul numérique des intégrales définies. Mémoires Acad. Sci. Inst. France 6, 571–602 (1823).Google Scholar
  38. Pringsheim, A., Divergente Reihen. Ency. d. math. Wissenschaften, IA 3, Secs. 38–40: 1198.Google Scholar
  39. Ricotti, E., Sulle serie divergenti sommabili. Giornale di Mat. di Battaglini, 48, 79–111 (1910).Google Scholar
  40. Riemann, B., Gesammelte Mathematische Werke. New York: Dover reprint, 1953.Google Scholar
  41. Riesz, M., Sur les séries de Dirichlet et les séries entières. Comptes Rendus, 149, 909–912 (1909).Google Scholar
  42. Schur, I., Über die Äquivalenz der Cesàroschen und Hölderschen Mittelwerte. Math. Annalen, 74, 447–458 (1913).Google Scholar
  43. Silverman, L. L., On the definition of the sum of a divergent series. Univ. of Missouri Studies, 1–96, 1913.Google Scholar
  44. Smail, L. L., History and Synopsis of the Theory of summable Infinite Processes. Eugene, Oregon: Univ. Press 1925.Google Scholar
  45. Takenaka, S., A general view of the theory of summability. Tohoku Math. Journal, 21, 193–221 (1922).Google Scholar
  46. Whittaker, E. T., A Course of Modern Analysis. Cambridge: Univ. Press 1902.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • John Tucciarone
    • 1
  1. 1.St. John's UniversityJamaica, New York

Personalised recommendations