Water Air & Soil Pollution

, Volume 56, Issue 1, pp 667–680 | Cite as

The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature

  • E. Schuster


The behavior of Hg in the soil is mainly controlled by adsorption and desorption processes depending on complexation, the most important ligands in solution being OH, Cl, and organic anions. Since the solubility of HgCl2 and Hg(OH)2 is rather high, the affinity of Hg to these ligands leads to an increased mobility. This is especially true for HgCl2, whereas the hydrolysis of Hg2+ may result in the specific adsorption of Hg on mineral colloids. The high affinity of Hg to S explains the strong binding of Hg to soil organic matter and also the stability of HgS. Further precipitation products than HgS are unlikely to occur, since the activity of Hg2+ remains too low to exceed the solubility product of any other defined Hg compound. It is mainly the physical fractioning of soil organic matter (dissolved vs adsorbed) that determines the behavior and distribution of Hg in soils.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, A.: 1979, ‘Mercury in soils’, in O. Nriagu (ed.), The Biogeochemistry of Mercury in the Environment. Elsevier, North-Holland Biomedical Press, Amsterdam, The Netherlands, pp. 79–112.Google Scholar
  2. Aomine, S. and Inoue, K.: 1967, Soil Sci. Plant Nutr. 13, 129.Google Scholar
  3. Aomine, S., Kawasaki, H. and Inoue, K.: 1967, Soil Sci. Plant Nutr. 13, 186.Google Scholar
  4. Behra, P.: 1986, ‘Migration or retention of mercury II salts when percolating through a porous medium constituted of a natural quarz sand?’, in Environmental Contamination, 2nd Int. Conf. Amsterdam, Sept. 1986, pp. 318–320.Google Scholar
  5. Bourg, A.C.M.: 1988, ‘Metals in aquatic and terrestrial systems: sorption, speciation and mobilisation’, in W. Salomons and U. Förstner (eds.), Environmental impact and management of mine tailings and dredged materials, Springer Verlag, pp. 3–32.Google Scholar
  6. Bourg, A.C.M. and Schindler, P.W.: 1985, ‘Control of trace metals in natural aquatic systems by the adsorptive properties of organic matter’ in T.D. Lekkas (ed.), Proc. 5th Int. Conf. Heavy Metals in the Environment, Athens (GR), Sept. 1985, pp. 97–99.Google Scholar
  7. Brümmer, G.W.: 1986, ‘Heavy metal species, mobility and availability in soils’, in M. Berhard, F.E. Brinckman and P.J. Sadler (eds.), The Importance of Chemical “Speciation” in Environmental Processes, pp. 169–192.Google Scholar
  8. Cappon, C.J.: 1987, Water, Air and Soil Pollut. 34, 353.CrossRefGoogle Scholar
  9. Cranston, R.E. and Buckley, D.E.: 1972, Environm. Science Technol. 6, 274.CrossRefGoogle Scholar
  10. Dudas, M.J. and Pawluk, S.: 1976, Can. J. Soil Sci. 56, 413.CrossRefGoogle Scholar
  11. Elliott, H.A., Huang, C.P.: 1979, Environ. Internat. 2, 145.CrossRefGoogle Scholar
  12. Fang, S.C.: 1978, Environ. Sci. Technol. 12, 285.CrossRefGoogle Scholar
  13. Farrah, H. and Pickering, W.F.: 1978, Water, Air, Soil Pollut. 9, 23.CrossRefGoogle Scholar
  14. Feick, G., Horne, R.A. and Yeaple, D.: 1972, Science 175, 1142.CrossRefGoogle Scholar
  15. Forbes, E.A., Posner, A.M. and Quirk, J.P.: 1974, J. Coll. Interf. Sci. 49, 403.CrossRefGoogle Scholar
  16. Frimmel, F.: 1976, Z. Wasser Abwasser Forsch. 6, 170.Google Scholar
  17. Frimmel, F.H., Sattler, D. and Quentin, K.E.: 1980, Vom Wasser 55, 111.Google Scholar
  18. Frimmel, F.H., Geywitz, J. and Velikov, B.L.: 1983, Vom Wasser 61, 17.Google Scholar
  19. Gilmour, J.T.: 1971, Envir. Lett. 2, 143.CrossRefGoogle Scholar
  20. Gotoh, S. and Koga, H.: 1977, Plant and Soil 47, 49.CrossRefGoogle Scholar
  21. Gracey, H.I. and Stewart, J.W.B.: 1974, ‘The fate of applied mercury in soil’, in J. Tomlinson (ed.) Proc. Int. Conf. on Land for Waste Management, Oct. 1973. Agric. Inst. of Canada, Ottawa, Ontario, pp. 97–103.Google Scholar
  22. Hahne, H.C.H. and Kroontje, W.: 1973a, J. Environ. Qual. 2, 444.CrossRefGoogle Scholar
  23. Hahne, H.C.H. and Kroontje, W.: 1973b, Proc. Soil Sci. Soc. Amer. 37, 838.Google Scholar
  24. Harsh, J.B. and Doner, H.E.: 1981, J. Environ. Qual. 10, 333.CrossRefGoogle Scholar
  25. Hogg, T.J., Stewart, J.W. and Bettany, J.R.: 1978, J. Environ. Qual. 7, 440.CrossRefGoogle Scholar
  26. Inoue, K. and Aomine, S.: 1969, Soil Sci. Plant Nutr. 15, 86–91.Google Scholar
  27. Käferstein, et al: 1979, Blei, Cadmium und Quecksilber in und auf Lebensmitteln, ZEBS-Berichte 1/1979, Schriftenreihe des des BGA, Reimer-Verlag, Berlin.Google Scholar
  28. Kerndorff, H. and Schnitzer, M.: 1980, Geochim. Cosmochim. Acta 44, 1701.CrossRefGoogle Scholar
  29. Kinniburgh, D.G. and Jackson, M.L.: 1978, Soil Sci. Soc. Am. J. 42, 45.CrossRefGoogle Scholar
  30. Kloke, A.: 1985, Garten und Umwelt 37, 1.Google Scholar
  31. Landa, E.R.: 1978, Geochim. Cosmochim. Acta 42, 1407.CrossRefGoogle Scholar
  32. Leckie, J.O.: 1986, ‘Adsorption and transformation of trace element species at sediment/water interfaces’ in M. Berhard, F.E. Brinckman and P.J. Sadler (eds.), The Importance of Chemical “Speciation” in Environmental Processes. Springer-Verlag, pp. 237–254.Google Scholar
  33. Lindberg, S.E., Andren, A.W. and Harriss, R.C.: 1975, ‘Geochemistry of mercury in the estuarine environment’, in E.L. Cronin (ed), Estuarine Research. Chemistry, Biology and the Estuarine System, Vol. I, Academic Press, New York, pp. 64–107.Google Scholar
  34. Lindberg, S.E., Jackson, D.R., Huckabee, J.W., Janzen, S.A., Levin, M.J. and Lund, J.R.: 1979, J. Environ. Qual. 8, 572.CrossRefGoogle Scholar
  35. Lockwood, R.A. and Chen, K.Y.: 1973, Environm. Sci. Technol. 7, 1028.CrossRefGoogle Scholar
  36. McKeague, J.A. and Kloosterman, B.: 1974, Can. J. Soil Sci. 54, 503.CrossRefGoogle Scholar
  37. MacNaughton, M.G. and James, R.O.: 1974, J. Colloid Int. Sci. 47, 431.CrossRefGoogle Scholar
  38. Moraghan, J.T.: 1971, N. Dakota Farm Res. 4, 53.Google Scholar
  39. Newton, D.W., Ellis, R.JR. and Paulsen, G.M.: 1976, J. Env. Qual. 5, 251.CrossRefGoogle Scholar
  40. Obukhovskaya, T.D. and Zyrin, N.G.: 1987, Moscow Univ. of Soil Science Bull. 42, 39.Google Scholar
  41. Poelstra, P., Frissel, R.J., Van der Klugt, N. and Tap, W.: 1974, ‘Behavior of mercury compounds in soils: accumulation and evaporation’ in Comparative Studies of Food and Environmental Contamination. Proc. Series IAEA-SM-175/46, Vienna, pp. 281–292.Google Scholar
  42. Ramamoorthy, S. and Rust, B.R.: 1976, Env. Geology 2, 165.CrossRefGoogle Scholar
  43. Randle, K. and Hartmann, E.H.: 1987, Geoderma 40, 281.CrossRefGoogle Scholar
  44. Reimers, R.S. and Krenkel, P.A.: 1974, ‘Sediment sorption phenomena’ in Mercury: Environmental Considerations, Part II. CRC Press Inc. Cleveland, Ohio, pp. 265–295.Google Scholar
  45. Schindler, P.W. and Stumm, W.: 1988, ‘The surface chemistry of oxides, hydroxides and oxide minerals’, in W. Stumm (ed.), Aquatic Surface Chemistry. John Wiley & Sons, New York, pp. 83–110.Google Scholar
  46. Schnitzer, M., Kerndorff, H.: 1981, Water Air Soil Pollut. 15, 97.CrossRefGoogle Scholar
  47. Semu, E., Singh, B.R. and Selmer-Olsen, A.R.: 1987, Water, Air, Soil Pollut. 32, 1.Google Scholar
  48. Sillen, L.G. and Martell, A.G.: 1971, Stability constants of metal-ion complexes. Special Publication No 25. The Chem. Soc. London.Google Scholar
  49. Stumm, W. and Morgan, J.J.: 1981, Aquatic Chemistry. John Wiley and Sons, New York.Google Scholar
  50. Trost, P.B. and Bisque, R.E.: 1970, ‘Distribution of mercury in residual soils’, in R. Hartung & B.D. Dinman (eds.), Environmental Mercury Contamination. Ann Arbor Science Publ., pp. 178–196.Google Scholar
  51. Vuceta, J.: 1976, Adsorption of Pb(II) and Cu(II) on α-quartz from aqueous solutions: influence of pH, ionic strength, and complexing ligands. Ph.D. Thesis, California Inst. of Technology.Google Scholar
  52. Wollast, R., Billen, G., Mackenzie, F.T.: 1975, ‘Behavior of mercury in natural systems and its global cycles’, in A.D. McIntyre and C.F. Mills (eds.), Ecological Toxicology Research: Effects of Heavy Metal and Organohalogen Compounds. Proceedings of a NATO Science Conference. London, N. Y. Plenum Press, pp. 145–166.Google Scholar
  53. Zyrin, N.G. and Sadovnikova, L.K.: 1988, Moscow University Soil Science Bulletin 43, 25–30.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • E. Schuster
    • 1
  1. 1.Soil Science InstituteTU MünchenFreising-WeihenstephanGermany

Personalised recommendations