Water Air & Soil Pollution

, Volume 56, Issue 1, pp 577–594

Atmospheric concentrations and deposition of Hg to A deciduous forest atwalker branch watershed, Tennessee, USA

  • S. E. Lindberg
  • R.R. Turner
  • T. P. Meyers
  • G. E. TaylorJr.
  • W. H. Schroeder
Article

Abstract

Aerosol and total vapor-phase Hg concentrations in air have been measured at Walker Branch Watershed, Tennessee for ≈ 2 yr. Airborne Hg at this site is dominated by vapor forms which exhibit a strong seasonal cycle, with summer maxima that correspond to elevated air temperature. Concentrations in this forest are near background levels; however, concentrations at a site within 3 km are significantly elevated due to emissions from Hg-contaminated soils. The concentration data have been combined with a recently modified dry deposition model to estimate dry deposition fluxes to the deciduous forest at Walker Branch. Weekly mean modeled Vd values for Hg° ranged from <0.01 (winter) to > 0.1 (summer) cm s1. Weekly dry deposition fluxes ranged from <0.1 µg m−2 during winter to > 1.0 µgg m−2 in the summer. Our dry deposition estimates plus limited measurements of wet deposition in this area indicate that dry deposition may be the dominant input process in this forest, at least during the summer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, S.C., Johnson, N.D., and Christison, J.: 1981, Atmospheric mercury deposition in Ontario. Proc. Air Pollut. Control. Assoc. 74th Annual Meeting, Paper JAPCA 81-60.4. Philadelphia, June 21–26, 1981.Google Scholar
  2. Bondietti E.A., Hoffman, F.O., and Larsen, I.L.: 1984, J. Environ. Radioact. 1,5.CrossRefGoogle Scholar
  3. Brosset, C.: 1982, Water, Air. Soil, Pollut. 17,37.Google Scholar
  4. Brosset, C.: 1987, Water, Air, Soil Pollut. 34,145.CrossRefGoogle Scholar
  5. Browne, C.L. and Fang, S.C.: 1978, Plant Physiology 61,430.CrossRefGoogle Scholar
  6. Du, S. and Fang, S.C. 1982. Uptake of elemental mercury vapor by C3 and C4 species. Environmental and Experimental Botany 22:437–443.CrossRefGoogle Scholar
  7. Fogg, T.R. and Fitzgerald, W.F. 1979. Mercury in Southern New England Coastal Rains. J. Geophys. Res. 84:6987–6989.CrossRefGoogle Scholar
  8. Glass, G., Leonard, E.N., Chan, W.H., and Orr, D.B. 1988. Airborne Mercury in Precipitation in the Lake Superior Region. J. Great Lakes Res. 12:37–51 (1988).CrossRefGoogle Scholar
  9. Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker, R.P. Jr, Matt, D.R. 1987. A preliminary multiple resistance routine for deriving deposition velocities from measured quantities. Water, Air, Soil, Pollut. 36:311–330.CrossRefGoogle Scholar
  10. Iverfeldt, A., and Rodhe, H. 1988. Atmospheric Transport and Deposition of Mercury in the Nordic Countries. IVL Report No. 1-87/285; Swedish Environmental Research Institute, Box 47086, S-40258 Göteborg, Sweden.Google Scholar
  11. Iverfeldt, A. 1990a. Occurrence and turnover of atmospheric Hg over the Nordic countries. (in preparation).Google Scholar
  12. Iverfeldt, A. 1990b. Hg in canopy throughfall and its relation to atmospheric dry deposition. (in preparation).Google Scholar
  13. Iverfeldt, A. and Lindqvist, A. 1986. Atmospheric oxidation of elemental Hg by ozone in the aqueous phase. Atmos. Envir. 20:1567–1573.CrossRefGoogle Scholar
  14. Johnson, D. W. and Van Hook, R. I.: (Eds.). 1989, Analysis of Bioqeochemical Cycling in Walker Branch Watershed, Springer-Verlag, Berlin.Google Scholar
  15. Kobayashi, T.: 1984, Deposition of atmospheric mercury to the ground through the precipitation and the fallout — A method for estimating the deposition rate of mercury. Reports of the Environmental Science Institute of Hyogo Prefecture. 16,35.Google Scholar
  16. Landa, E. R.: 1978, J. Environ. Qual 7,84.CrossRefGoogle Scholar
  17. Lindberg, S.E., Jackson, D.R., Huckabee, J.W., Janzen, S.A., Levin, M.J. and Lund, J.R.: 1979, J. Environ. Qual. 8,572.Google Scholar
  18. Lindberg, S.E., Stokes, P.M., Goldberg, E., and Wren, C.: 1987, Rapporteur's report on mercury. In T. C. Hutchinson and K. Meema (Eds.), Lead, Cadmium, and Mercury in the Environment, United Nations Scientific Committee on Problems in the Environment Series, John Wiley, NY, p. 17–34.Google Scholar
  19. Lindberg, S.E.: 1982, Atmos. Environ. 16,1701.CrossRefGoogle Scholar
  20. Lindberg, S.E. and Harris, R.C.: 1985, Mercury in rain and throughfall in a tropical rain forest. Proceedings Fifth International Conference on Heavy Metals in the Environment, CEP Consultants Ltd. Publishers, Edinburgh, UK, Vol. 1, 527–529.Google Scholar
  21. Lindberg, S.E., Harriss, R.C., and Turner, R.R.: 1982, Science 215, 1609.CrossRefGoogle Scholar
  22. Lindberg, S.E.: 1981, Atmos. Environ. 15, 631.Google Scholar
  23. Lindberg, S.E., Lovett, G.M., Richter D.R., and Johnson, D.W.: 1986, Science 231, 141.CrossRefGoogle Scholar
  24. Lindberg, S. E.: 1980, Atmos. Environ. 14, 227.CrossRefGoogle Scholar
  25. Lindberg, S.E., Meyers, T.P., Taylor, G.E., Turner, R.R., and Schroeder, W.H. Atmosphere/surface exchange of mercury in a forest: Results of modeling and gradient approaches. J. Geophys. Res. (in review).Google Scholar
  26. Lindqvist, O., Jernelov, A., Johansson, K., and Rodhe, H.: 1984, Mercury in the swedish Environment — Global and Local Sources. SNV Report no. 1816; Swedish Environmental Protection Board, Box 13021, S-17125, Solna, Sweden.Google Scholar
  27. Meyers, T.P., Huebert, B.J., and Hicks, B.B.: 1989, Boundary-Layer Meteor. 49,395.CrossRefGoogle Scholar
  28. Meyers, T.P., and Baldocchi, D.D.: 1988, TELLUS, 40B, 270.CrossRefGoogle Scholar
  29. Mierle, G.: 1990, Aqueous Inputs of Mercury to Precambrian Shield Lakes in Ontario. Environ. Toxicol. Chem. in press.Google Scholar
  30. Mikhailov, V.K. and Kochegarova, M.I.: 1967, Chem. Abstr. 69, 5777.Google Scholar
  31. Ottar, B., Lindberg, S.E., Voldner, E., Lindqvist, O., Mayer, R., Steinnes, E., and Watt, J.: 1989, Special topics concerning interactions of heavy metals with the environment. In Pacyna, J. and Ottar, B. (Eds.). Control and Fate of Atmospheric Trace Metals, NATO Advanced Science Institute Series, Kluwer Academic Publishers, Dordrecht, Holland, pp. 365–372.Google Scholar
  32. Sanemasa, I.: 1975, Bull. Chem. Soc. Japan 48, 1795.CrossRefGoogle Scholar
  33. Schroeder, W.H. and Jackson, R.A.: 1987, Chemosphere 16, 182.CrossRefGoogle Scholar
  34. Schroeder, W.H., Munthe, J., and Lindqvist O.: 1989, Water. Air. Soil Pollut. 48,337.CrossRefGoogle Scholar
  35. Turner, R.R., Bogle, M.A., Heidel, L., and McCain, L.: 1989, Mercury in ambient air at the Oak Ridge Y-12 plant July 1986 through April 1987. Laboratory Technical Report Number YTS-574 (in press).Google Scholar
  36. Xiao, Z.F., Munthe, J., Schroeder, W.H., and Lindqvist, O.: 1990, The transfer of mercury between the atmosphere and lake or soil surfaces. In Ross, H.B. (Ed.), Proc. Nordic Symposium on Atmospheric Chemistry. Report CM-78, University of Stockholm, March, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • S. E. Lindberg
    • 1
  • R.R. Turner
    • 1
  • T. P. Meyers
    • 2
    • 1
  • G. E. TaylorJr.
    • 3
    • 1
  • W. H. Schroeder
    • 4
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.NOAA Atmospheric Turbulence and Diffusion DivisionOak Ridge
  3. 3.Desert Research InstituteReno
  4. 4.Atmospheric Environment ServiceDownsviewCanada

Personalised recommendations