Abstract
Sulphur is an essential element for aquatic biosystems, the life processes of which lead to the formation of low molecular weight S compounds in the water. The results of our calculations indicate a pronounced tendency for Hg(II) to form HgS (or HgOHSH) and Hg(SR)2 complexes in the presence of H2S and thiols. Likewise, McHg will form CH3HgSH and CH3HgSR complexes, but in this case the chloride complex will dominate at low concentrations of H2S and thiols. In acidic low salinity water, CH3HgCl is the dominant McHg species at the lowest concentration of sulphide/thiols (0.1 nM), whereas a hundredfold increase of the sulphide/thiol concentration, or an increase of the pH to neutral or slightly alkaline conditions, will result in a total dominance for CH3HgSH and CH3HgSR.
Keywords
Thiol Natural Water Stability Constant Chloride Complex H2SePreview
Unable to display preview. Download preview PDF.
References
- Andreae, M.O.: 1990, Mar. Chem. 30, 1.CrossRefGoogle Scholar
- Anfalt, T., Dyrssen, D., Ivanova, E., and Jagner, D.: 1968, Sv. Kern. Tidskrift 80, 340.Google Scholar
- Cowan, C.E.: Review of Selenium Thermodynamic Data, EPRI Report EA-5655, prepared by Battelle, Pacific Northwest Laboratories, Richland, Wash., U.S.A.Google Scholar
- Cutter, G.A.: 1985, Anal. Chem. 57, 2951.CrossRefGoogle Scholar
- Cutter, G.A. and Krahforst, C.F.: 1988, Geophys. Res. Lett. 15, 1393.CrossRefGoogle Scholar
- Dyrssen, D.: 1985, Mar. Chem. 15, 285.CrossRefGoogle Scholar
- Dyrssen, D.: 1988, Mar. Chem. 24, 143.CrossRefGoogle Scholar
- Dyrssen, D.: 1989, Mar. Chem. 28, 241.CrossRefGoogle Scholar
- Dyrssen, D. and Kremling, K.: 1990, Mar. Chem. 30, 193.CrossRefGoogle Scholar
- Dyrssen, D. and Wedborg, M.: 1974, Ch. 5 in The Sea, Vol. 5 (E.D. Goldberg ed.), Wiley-Interscience.Google Scholar
- Dyrssen, D. and Wedborg, M.: 1986, Anal. Chim. Acta 180, 473.CrossRefGoogle Scholar
- Dyrssen, D. and Wedborg, M.: 1989, Mar. Chem. 26, 289.CrossRefGoogle Scholar
- Gübeli A.O. and Ste-Marie, J.: 1967, Can. J. Chem. 45, 2101.CrossRefGoogle Scholar
- Martell A.E. and Smith, R.M.: 1982, Critical Stability Constants, Vol. 5: First supplement. Plenum Press, New York and LondonGoogle Scholar
- Mehra, M.C. and Gubeli A.O.: 1971, J. Less-Common Metals 25, 221.CrossRefGoogle Scholar
- Scwarzenbach G. and Schellenberg, M.: 1965, Helv. Chim. Acta 48, 28.CrossRefGoogle Scholar
- Sillén, L.G. and Martell, A.E.: 1964, Stability Constants of Metal-Ion Complexes. Chemical Society, London, Special Publ. No. 17.Google Scholar
- Sillén, L.G. and Martell, A.E.: 1971, Stability Constants of Metal-Ion Complexes, Supplement No. 1. Chemical Society, London, Special Publ. No. 25.Google Scholar
- Smith, R.M. and Martell, A.E.: 1976, Critical Stability Constants, Vol. 4: Inorganic Complexes. Plenum Press, New York and London.Google Scholar
- Smith, R.M. and Martell, A.E.: 1989, Critical Stability Constants, Vol. 6: Second supplement. Plenum Press, New York and London.Google Scholar
- Ste-Marie, J., Torma, A.E., and Gübeli A.O.: 1964, Can. J. Chem. 42, 662.CrossRefGoogle Scholar
- Strömberg, F.: 1990, Some Mercury Compounds Studied by Relativistic Quantum Chemical Methods. Ph.D. thesis, Department of Inorganic Chemistry, University of Göteborg, Sweden.Google Scholar
- Strömberg, D, Strömberg, A., and Wahlgren, U.: 1991, this volume of WASP.Google Scholar