Organization of the sensory hairs in the gravity receptors in utricule and saccule of the squirrel monkey

  • Heinrich H. Spoendlin


The structural organization of the sensory hairs of the gravity receptors is mainly characterized by the presence of one kinocilium and 40–110 stereocilia on each sensory cell. The spatial arrangement of the kinocilia in relation to the stereocilia presents a polarization, similar to that in the sensory epithelia of the cristae. This polarization, however, is not uniform in the maculae. The direction of polarization varies between groups of several hundred sensory cells. Within one group the sensory cells are all polarized in the same main direction and these groups are considered as functional units.

The apparent stiffness and low metabolic activity of the stereocilia suggest their mechanical transmitter function between the otolithic membrane and the sensory cells.

The presence of modified kinocilia and basal bodies in other sensory systems raises the question of their significance in sensory receptors. Their unmodified structure in the maculae, however, where the basal bodies are almost identical with centrioles, and the presence of one kinocilium with a basal body and an associated centriole in the supporting cells as well, illustrate their unspecific nature. The centrioles, which later probably become basal bodies, are in close relation to the differentiation of apical cytoplasmic structures such as the kinocilium and the cuticula. This is demonstrated by the appearance of those structures at the bottom of the sensory cell, when the centrioles are situated in this part of the cell.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, Barbara S.: Ciliated secretory cells in pars distalis of the hypophysis. J. Ultrastruct. Res. 5, 453–467 (1961).Google Scholar
  2. Bos, J. H., L. B. W. Jongkees, and A. J. Philipsszoon: On the action of linear accelerations upon the otoliths. Acta oto-laryng. (Stockh.) 56, 477–489 (1963).Google Scholar
  3. Chapman, G. B., and L. G. Tilney: Cnidocils in nematocysts. J. biophys. biochem. Cytol. 5, 69–78 (1959).Google Scholar
  4. Dahl, H. A.: Fine structure of cilia in rat cerebral cortex. Z. Zellforsch. 60, 369–386 (1963).Google Scholar
  5. Davis, H.: Neural mechanisms of auditory and vestibular systems. Eds.: G. L. Rasmussen and W. F. Windle, p. 21. Springfield, Ill. 1960.Google Scholar
  6. Engström, H., H. Ades, and J. Hawkins: Structur and function of the sensory hairs of the inner ear. J. acoust. Soc. Amer. 34, 1356–1363 (1962).Google Scholar
  7. Fawcett, D. W.: Cilia and flagella, vol. 2, p. 217–297. New York: Academic Press 1961.Google Scholar
  8. Flock, A., and J. Wersäll: A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors. J. Cell Biol. 15, 19–32 (1962).Google Scholar
  9. Gall, J. G.: Centriole replication. J. biophys. biochem. Cytol. 10, 163–193 (1961).Google Scholar
  10. Gibbons, I. R., and A. V. Grimstone: On flagellar structure in certain flagellates. J. biophys. biochem. Cytol. 7, 697–716 (1960).Google Scholar
  11. Held, H.: Die Cochlea der Säuger und der Vögel. A. Bethe: Handbuch der normalen und pathologischen Physiologie, Bd. 11, S. 467–541. Berlin: Springer 1926.Google Scholar
  12. Henneguy, L. R.: Sur les rapports des ciles vibratiles avec les centrosomes. Arch. Anat. micr. 1, 481–495 (1897).Google Scholar
  13. Jongkees, L. B. W., J. P. M. Philipsszoon, and A. J. Philipsszoon: Clinical nystagmography. Pract. oto-rhino-laryng. (Basel) 24, 65–93 (1962).Google Scholar
  14. Kolmer, W.: Das Gehörorgan. In: Handbuch der mikroskopischen Anatomie des Menschen, Bd. III/1, S. 250–456. Berlin: Springer 1927.Google Scholar
  15. Lasansky, A., and E. de Robertis: Submicroscopic analysis of the genetic dystrophy of visual cells in C3H mice. J. biophys. biochem. Cytol. 7, 679–684 (1960).Google Scholar
  16. Lenhossék, M. v.: Über Flimmerzellen. Verh. anat. Ges. 12, 106–128 (1898).Google Scholar
  17. Löwenstein, O., and J. Wersäll: A functional interpretation of the electron-microscopic structure of the sensory hairs in the cristae of the Elasmobranch Raja clavata in terms of directional sensitivity. Nature (Lond.) 184, 1807–1808 (1959).Google Scholar
  18. Retzius, M. G.: Morphologisch-histologische Studien. Das Gehörorgan der Wirbeltiere. II. Stockholm 1884.Google Scholar
  19. Robertson, J. D.: The ultrastructure of cell membranes and their derivatives. Symp. Biochem. Soc. 16, 3–43 (1959).Google Scholar
  20. Roth, L. E.: Ciliary coordination in the protozoa. Exp. Cell Res., Suppl. 5, 573–585 (1958).Google Scholar
  21. Rouiller, Ch., E. Fauré-Fremiet, et M. Gauchery: Origine ciliaire des fibrilles scléroprotéiques pédonculaires chez les ciliés péritriches. Exp. Cell Res. 11, 527–541 (1956).Google Scholar
  22. Sjöstrand, P. S.: The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron-microscopy. J. cell. comp. Physiol. 42, 45–70 (1953).Google Scholar
  23. Sotelo, J. R., and O. Trujillo-Cenòz: Electron-microscopic study on the development of ciliary components of the neural epithelium of the chick embryo. Z. Zellforsch. 49, 1–12 (1958).Google Scholar
  24. Spoendlin, H.: Submikroskopische Strukturen im Cortischen Organ der Katze. Acta otolaryng. (Stockh.) 52, 111–130 (1960).Google Scholar
  25. Tennyson, V. M., and G. D. Pappas: An electron-microscopic study of ependymal cells of the fetal, early postnatal and adult rabbits. Z. Zellforsch. 56, 595–618 (1962).Google Scholar
  26. Wersäll, J.: Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta oto-laryng. (Stockh.), Suppl. 126 (1956).Google Scholar
  27. Wolken, J. J.: A molecular morphology of Euglena gracilis var. bacillaris. J. Protozool. 3, 211–225 (1956).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Heinrich H. Spoendlin
    • 1
    • 2
    • 3
  1. 1.Massachusetts Eye and Ear InfirmaryBoston
  2. 2.School of MedicineYale UniversityNew Haven
  3. 3.Kantonsspital ZürichOtorhinolaryngologische Klinik und Poliklinik der Univ.Schweiz

Personalised recommendations