Probability Theory and Related Fields

, Volume 82, Issue 4, pp 527–544 | Cite as

Non-commutative central limits

  • D. Goderis
  • A. Verbeure
  • P. Vets
Article

Summary

Non-commutative central limit theorems are derived. The CCR-C*-algebra of fluctuations is analyzed in detail. The stability of the central limit is studied by means of the notion of relative entropy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cushen, C.D., Hudson, R.L.: A quantum mechanical central limit theorem. J. Appl. Probab. 8, 454–469 (1971)Google Scholar
  2. 2.
    Crockroft, A.A., Gudder, S.P., Hudson, R.L.: A quantum mechanical functional limit theorem. J. Multivariate Anal. 7, 125–148 (1977)Google Scholar
  3. 3.
    Fannes, M., Quaegebeur, J.: Central limits of product mappings between CAR-algebras. Public. RIMS, Kyoto, 19, 469–491 (1983)Google Scholar
  4. 4.
    Quaegebeur, J.: A non-commutative central limit theorem for CCR-algebras. J. Funct. Anal. 57, 1–20 (1984)Google Scholar
  5. 5.
    Hudson, R.L.: A quantum mechanical central limit theorem for anti-commuting observables. J. Appl. Probab. 10, 502–509 (1973)Google Scholar
  6. 6.
    Parthasarathy, K.R.: Central limit theorems for positive definite functions on Lie groups. In: Zanichelli (ed.) Symposia Mathematics XXI, p. 245–256 Bologna: Academic Press 1977Google Scholar
  7. 7.
    Giri, N., von Waldenfels, W.: An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheor. Verw. Geb. 42, 129–134 (1978)Google Scholar
  8. 8.
    von Waldenfels, W.: An algebraic central limit theorem in the anti-commuting case. Z. Wahrscheinlichkeitstheor. Verw. Geb. 42, 135–140 (1978)Google Scholar
  9. 9.
    Accardi, L., Bach, A.: Quantum central limit theorems for strongly mixing random variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68, 393–402 (1985)Google Scholar
  10. 10.
    Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)Google Scholar
  11. 11.
    Manuceau, J., Sirugue, M., Testard, D., Verbeure, A.: The smallest C *-algebra for canonical commutations relations. Commun. Math. Phys. 32, 231 (1973)Google Scholar
  12. 12.
    Manuceau, J., Sirugue, M., Rocca, F., Verbeure, A.: Quasi-free states. In: Kastler, D. (ed.) Cargèse Lecture Notes in Physics, vol. 4. New York: Gordon-Beach 1970Google Scholar
  13. 13.
    Manuceau, J.: C *-algèbre de relations de communcation; Ann. Inst. Henri Poincare 8, 139–161 (1968)Google Scholar
  14. 14.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator Algebras, vol. II. London: Academic 1986Google Scholar
  15. 15.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, vols. I and II. New York: Springer 1979/1981Google Scholar
  16. 16.
    Arveson, W.: On groups of automorphisms of operator algebras. J. Funct. Anal. 15, 217–243 (1974)Google Scholar
  17. 17.
    Naudts, J., Verbeure, A., Weder, R.: Linear response theory and the KMS condition. Commun. Math. Phys. 44, 87–99 (1975)Google Scholar
  18. 18.
    Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS, Kyoto Univ. 9, 165–209 (1973)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. Goderis
    • 1
  • A. Verbeure
    • 1
  • P. Vets
    • 1
  1. 1.Instituut voor Theoretische FysicaUniversiteit LeuvenLeuvenBelgium

Personalised recommendations