Current Genetics

, Volume 16, Issue 5–6, pp 339–346 | Cite as

High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier

  • Robert H. Schiestl
  • R. Daniel Gietz
Original articles

Summary

A method, using LiAc to yield competent cells, is described that increased the efficiency of genetic transformation of intact cells of Saccharomyces cerevisiae to more than 1 × 105 transformants per microgram of vector DNA and to 1.5% transformants per viable cell. The use of single stranded, or heat denaturated double stranded, nucleic acids as carrier resulted in about a 100 fold higher frequency of transformation with plasmids containing the 2μm origin of replication. Single stranded DNA seems to be responsible for the effect since M13 single stranded DNA, as well as RNA, was effective. Boiled carrier DNA did not yield any increased transformation efficiency using spheroplast formation to induce DNA uptake, indicating a difference in the mechanism of transformation with the two methods.

Key words

Yeast Transformation ss carrier DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408–1412Google Scholar
  2. Bloch D (1976) In: King RC (eds) Handbook of genetics, vol 5. Plenum Press, New York, pp 139–167Google Scholar
  3. Burke DT, Carle GF, Olson MV (1987) Science 236:806–812Google Scholar
  4. Beggs JD (1978) Nature 275:104–109Google Scholar
  5. Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24Google Scholar
  6. Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133Google Scholar
  7. Bruschi CV, Comer AR, Howe GA (1987) Yest 3:131–137Google Scholar
  8. Bruschi CV, Howe GA (1985) J Cell Biochem 1519:150Google Scholar
  9. Brzobohaty B, Kovac L (1986) J Gen Microbiol 132:3089–3093Google Scholar
  10. Constanzo MC, Fox TD (1988) Genetics 120:667–670Google Scholar
  11. Devenish RJ, Newlon CS (1982) Gene 18:277–288Google Scholar
  12. Fasullo MT, Davis RW (1987) Proc Natl Acad Sci USA 84:6215–6219Google Scholar
  13. Gietz RD, Prakash S (1988) Gene 74:535–541Google Scholar
  14. Gietz RD, Sugino A (1988) Gene 74:527–534Google Scholar
  15. Gyuris J, Duda EG (1986) Mol Cell Biol 6:3295–3297Google Scholar
  16. Hanahan D (1983) J Mol Biol 166:557–580Google Scholar
  17. Harashima S, Takagi A, Oshima Y (1984) Mol Cell Biol 4:771–778Google Scholar
  18. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  19. Hoffman CS, Winston F (1987) Gene 57:267–272Google Scholar
  20. Holm C, Meeks-Wagner DG, Fangman WL, Botstein D (1986) Gene 42:169–173Google Scholar
  21. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  22. Jensen R, Sprague GF, Herskowitz I (1983) Proc Natl Acad Sci USA 80:3035–3039Google Scholar
  23. Johnston J, Hilger F, Mortimer R (1981) Gene 16:325–329Google Scholar
  24. Keszenman-Pereya D, Hieda K (1988) Curr Genet 13:21–23Google Scholar
  25. Klebe RJ, Harriss JV, Sharp D, Douglas MG (1983) Gene 25:333–341Google Scholar
  26. Kunkel TA, Roberts JD, Zakour RA (1987) Methods Enzymol 154:367–382Google Scholar
  27. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  28. Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Methods Enzymol 101:228–244Google Scholar
  29. Rose M, Winston F (1984) Mol Gen Genet 193:557–560Google Scholar
  30. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  31. Schiestl RH, Igarashi S, Hastings PJ (1988) Genetics 119:237–247Google Scholar
  32. Schiestl RH, Prakash S (1988) Mol Cell Biol 8:3619–3626Google Scholar
  33. Schiestl RH, Reynolds P, Prakash S, Prakash L (1989) Mol Cell Biol 9:1882–1896Google Scholar
  34. Schiestl RH, Wintersberger U (1982) Mol Gen Genet 186:512–517Google Scholar
  35. Struhl K (1983) Nature 305:391–397Google Scholar
  36. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Robert H. Schiestl
    • 1
  • R. Daniel Gietz
    • 1
  1. 1.Department of BiologyUniversity of RochesterRochesterUSA

Personalised recommendations