The neurosecretory system of the adult Calliphora erythrocephala

II. Histology of the neurosecretory cells of the brain and some related structures
  • Mathias Thomsen


Neurosecretory cells in the brain and suboesophageal ganglion of the adult female Calliphora erythrocephala have been studied in the light microscope. The paraldehydefuchsin stain (PAF) gave by far the clearest pictures.

The medial neurosecretory cells of the protocerebrum (m.n.c.) show definite cyclic changes as to the size of the nuclei and the content of secretory material. The cytological changes depend on the age of the fly and the diet given and are correlated with ovarian development.

The nuclear size is held to express the metabolic activity of the cells. Cells with large nuclei, as found in young sugar-flies (S1D) and meat-fed flies with developing ovaries (S4D/M2D), contain less secretory material which is released through the axons, while the m.n.c. of old sugar-flies (S6D) have small nuclei and are stuffed with secretory material which is stored in the perikarya.

These results confirm those obtained by darkfield microscopy of living m.n.c. by Lea and E.Thomsen (1962 and unpublished).

No really convincing evidence for the existence of more than one type of m.n.c. was found.

Two small groups of “lateral cells” were observed. Possibly neurosecretory are further: 1-(2) cells at the base of each optic lobe, two groups of 2–3 cells on the caudal side of the brain, and 2 cells ventrally in the suboesophageal ganglion.

“Giant neurons” of unknown function are situated very near the m.n.c. Their axons join those from the m.n.c., but end in the suboesophageal ganglion.

The same region comprises a number of peculiar cells, each containing a large, fluid-filled vacuole (“the vacuolated cells”). Similar cells are associated with the possibly neurosecretory cells on the caudal side of the brain.


Lateral Cell Ovarian Development Large Nucleus Cyclic Change Similar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvy, L., et M. Gabe: Données histophysiologiques sur la neuro-sécrétion chez quelques Éphéméroptères. Cellule 55, 203–222 (1953).Google Scholar
  2. - - Histochemistry of the neurosecretory product of the pars intercerebralis of pterygote insects. In: Neurosecretion, ed. by H.Heller and R.B.Clark. Mem. Soc. Endocr. 12, 331–344 (1962).Google Scholar
  3. Bern, H.A.: The properties of neurosecretory cells. Gen. comp. Endocr., Suppl. 1, 117–131 (1962).Google Scholar
  4. Block, B., E.Thomsen, and M.Thomsen: The neurosecretory system of the adult Calliphora erythrocephala. III. Electron microscopy of the medial neurosecretory cells of the brain. (In press.)Google Scholar
  5. Bounhiol, J.J., M. Gabe et L. Arvy: Données histophysiologiques sur la neuro-sécrétion chez Bombyx mori L., et sur ses rapports avec les glandes endocrines. Bull. biol. France et Belg. 87, 323–333 (1953).Google Scholar
  6. Cazal, P.: Les glandes endocrines rétro-cérébrales des insectes (étude morphologique). Bull. biol. France et Belg., Suppl. 32, 1–227 (1948).Google Scholar
  7. Clark, R.B.: The posterior lobes of the brain of Nepthys and the mucus-glands of the prostomium. Quart. J. micr. Sci. 96, 545–565 (1955).Google Scholar
  8. De Lerma, B.: Corpora cardiaca et neurosécrétion protocérébrale chez le coleoptère Hydrous piceus. Ann. Sci. nat. Zool., Ser. 11, 18, 235–249 (1956).Google Scholar
  9. Dethier, V.G.: The nerves and muscles of the proboscis of the blow fly Phormia regina Meigen in relation to feeding responses. Smithson. Misc. Coll. 137, 157–174 (1959).Google Scholar
  10. Fraenkel, G.: Utilization and digestion of carbohydrates by the adult blowfly. J. exp. Biol. 17, 18–29 (1940).Google Scholar
  11. Füller, H.B.: Morphologische und experimentelle Untersuchungen über die neurosekretorischen Verhältnisse im Zentralnervensystem von Blattiden und Culiciden. Zool. Jb., Abt. allg. Zool. u. Physiol. 69, 224–250 (1960).Google Scholar
  12. Gabe, M.: Sur quelques applications de la coloration par la fuchsine-paraldéhyde. Bull. Micr. appl. 3, 153–162 (1953).Google Scholar
  13. —: La neuro-sécrétion chez les invertébrés. Ann. Biol. 30, 6–62 (1954).Google Scholar
  14. Grandori, L.: Anello di Weismann e neurosecrezioni in Calliphora erythrocephala Meig. e Musca domestica L. (Nota preliminare). Boll. Zool. Agrar. Milano 20, I, 51–59 (1954).Google Scholar
  15. Grandori, R.E., e E. Care: Sulla presenza de cellule giganti nel sistema nervoso centrale de Musca domestica L. Boll. Zool. Agrar. Milano 18, II, 1–9 (1951).Google Scholar
  16. Hanström, B.: Zwei Probleme betreffs der hormonalen Lokalisation im Insektenkopf. Acta Univ. Lund, N.F., Avd. 2, 39, 1–17 (1938).Google Scholar
  17. —: Inkretorische Organe, Sinnesorgane und Nervensystem des Kopfes einiger niederer Insektenordnungen. K. svenska Vet.-Akad. Handl., Ser. III 18 (8), 1–266 (1940).Google Scholar
  18. Herlant-Meewis, H., et L. Paquet: Neurosécrétion et mue chez Carausius morosus Brdt. Ann. Sci. nat. Zool. Ser. 11, 18, 163–169 (1956).Google Scholar
  19. Hess, A.: The fine structure of nerve cells and fibers, neuroglia, and sheaths of the ganglion chain in the cockroach (Periplaneta americana). J. biophys. biochem. Cytol. 4, 731–742 (1958).Google Scholar
  20. Highnam, K.C.: The histology of the neurosecretory system of the adult female Desert Locust, Schistocerca gregaria. Quart. J. micr. Sci. 102, 27–38 (1961).Google Scholar
  21. Johansson, A.S.: Relation of nutrition to endocrine-reproductive functions in the Milkweed Bug (Oncopeltus fasciatus Dallas) (Heteroptera: Lygaeidae). Nytt Mag. Zool. 7, 1–132 (1958).Google Scholar
  22. Khan, T.R., and A.Fraser: Neurosecretion in the embryo and later stages of the cockroach (Periplaneta americana L.). In: Neurosecretion, ed. by H.Heller and R.B.Clark. Mem. Soc. Endocr. 12, 349–369 (1962).Google Scholar
  23. Kloot, W.G. Van derxxx: Neurosecretion in insects. Ann. Rev. Ent. 5, 35–52 (1960).Google Scholar
  24. Köpf, H.: Über Neurosekretion bei Drosophila I. Zur Topographie und Morphologie neurosekretorischer Zentren bei der Imago von Drosophila. Biol. Zbl. 76, 28–42 (1957).Google Scholar
  25. Lea, A. O., and E.Thomsen: Cycles in the synthetic activity of the medial neurosecretory cells of Calliphora erythrocephala and their regulation. In: Neurosecretion, ed. by H. Heller and R. B.Clark. Mem. Soc. Endocr. 12, 345–346 (1962).Google Scholar
  26. Nayar, K.K.: The neurosecretory system of the fruitfly Chaetodacus cucurbitae Coq. I. Distribution and description of the neurosecretory cells in the adult fly. Proc. Indian Acad. Sci. 40, 138–144 (1954).Google Scholar
  27. Nayar, K.K.: Studies on the neurosecretory system of Iphita limbata Stal. I. Distribution and structure of the neurosecretory cells of the nerve ring. Biol. Bull. Woods Hole 108, 296–307 (1955).Google Scholar
  28. Normann, T.C.: The neurosecretory system of the adult Calliphora erythrocephala I. The fine structure of the corpus cardiacum, with some observations on adjacent organs. Z. Zellforsch. 67, 461–501 (1965).Google Scholar
  29. Power, M.E.: The brain of Drosophila melanogaster. J. Morph. 72, 519–560 (1943).Google Scholar
  30. Raabe, M.: Neurohormones chez les insectes. Bull. Soc. Zool. France 84, 271–316 (1959).Google Scholar
  31. Rehm, M.: Sekretionsperioden neurosekretorischer Zellen im Gehirn von Ephestia kühniella. Z. Naturforsch. 5, 167–169 (1950).Google Scholar
  32. —: Morphologische und histochemische Untersuchungen an neurosekretorischen Zellen von Schmetterlingen. Z. Zellforsch. 42, 19–58 (1955).Google Scholar
  33. Rensing, L.: Daily rhytmicity of corpus allatum and neurosecretory cells in Drosophila melanogaster (Meig.). Science 144, 1586–1587 (1964).Google Scholar
  34. Scharrer, B.: Hormones in Invertebrates. Hormones 3, 57–95 (1955).Google Scholar
  35. Scharrer, E., and B. Soharrer: Neurosekretion. In: Handbuch der mikroskopischen Anatomie des Menschen, herausgeg. Vonxxx W. Bargmann, Bd. 6, 5, S. 953–1066. Berlin-GöttingenHeidelberg: Springer 1954.Google Scholar
  36. Strangways-Dixon, J.: The relationship between nutrition, hormones and reproduction in the blowfly Calliphora erythrocephala (Meig.). I. Selective feeding in relation to the reproductive cycle, the corpus allatum volume and fertilization. J. exp. Biol. 38, 225–235 (1961).Google Scholar
  37. Stutinsky, F.: Étude du complexe rétro-cérébral de quelques insectes avec l'hématoxyline chromique. Bull. Soc. Zool. France 77, 61–67 (1952).Google Scholar
  38. Thomsen, E.: Effect of removal of neurosecretory cells in the brain of adult Calliphora erythrocephala Meig. Nature (Lond.) 161, 439 (1948).Google Scholar
  39. —: Functional significance of the neurosecretory brain cells and the corpus cardiacum in the female blow-fly, Calliphora erythrocephala Meig. J. exp. Biol. 29, 137–172 (1952).Google Scholar
  40. - A.O.Lea: Cyclic changes in the corpus allatum and the medial neurosecretory cells of the Calliphora erythrocephala female and their relation to the diet. (In preparation).Google Scholar
  41. —, and I. Møller: Neurosecretion and intestinal proteinase activity in an insect, Calliphora erythrocephala Meig. Nature (Lond.) 183, 1401–1402 (1959).Google Scholar
  42. - -Further studies on the function of the neuroseoretory brain cells of the adult Calliphora female. In: The Ontogeny of Insects. Acta symposii de evolutione insectorum. Praha 1959 (1960).Google Scholar
  43. —: Influence of neurosecretory cells and of corpus allatum on intestinal protease activity in the adult Calliphora erythrocephala Meig. J. exp. Biol. 40, 301–321 (1963).Google Scholar
  44. Thomsen, M.: Weismann's ring and related organs in larvae of Diptera. Dan. Biol. Skr. 6, No 5, 1–32 (1951).Google Scholar
  45. —: Observations on the cytology of neurosecretion in various insects (Diptera and Hymenoptera). Publ. Staz. Zool. Napoli 24, Suppl., 46–47 (1954a).Google Scholar
  46. —: Neurosecretion in some Hymenoptera. Dan. Biol. Skr. 7, No 5, 1–34 (1954b).Google Scholar
  47. Weyer, F.: Über drüsenartige Nervenzellen im Gehirn der Honigbiene, Apis mellifica L. Zool. Anz. 112, 137–141 (1955).Google Scholar
  48. Wigglesworth, V.B.: The haemocytes and connective tissue formation in an insect Rhodnius prolixus (Hemiptera). Quart. J. micr. Sci. 97, 89–98 (1956).Google Scholar
  49. —: The histology of the nervous system of an insect, Rhodnius prolixus (Hemiptera). I. The peripheral nervous system. Quart. J. micr. Sci. 100, 285–298 (1959a).Google Scholar
  50. —: The histology of the nervous system of an insect, Rhodnius prolixus (Hemiptera). II. The central ganglia. Quart. J. micr. Sci. 100, 299–313 (1959b).Google Scholar
  51. —: Axon structure and the dictyosomes (Golgi bodies) in the neurones of the cockroach, Periplaneta americana. Quart. J. micr. Sci. 101, 381–388 (1960a).Google Scholar
  52. —: The nutrition of the central nervous system in the cockroach Periplaneta americana L. The role of the perineurium and glial cells in the mobilization of reserves. J. exp. Biol. 37, 500–512 (1960b).Google Scholar
  53. —: The hormonal regulation of growth and reproduction in insects. Adv. Ins. Physiol. 2, 247–336 (1964).Google Scholar
  54. Williams, C.M.: The endocrinology of diapause. Bull. Biol., Suppl. 33, 52–56 (1948).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Mathias Thomsen
    • 1
  1. 1.Zoological LaboratoryRoyal Veterinary and Agricultural CollegeCopenhagen

Personalised recommendations