Advertisement

Selection and preliminary characterization of a Pseudomonas aeruginosa strain mineralizing selected isomers in a branchedchain dodecylbenzenesulphonate mixture

  • G. Soberón-Chávez
  • J. Campos
  • A. Haïdour
  • J. L. Ramos
  • J. Ortigoza
Research

Abstract

A bacterium able to grow at the expense of some isomers in a commercial surfactant preparation consisting of branched-chain dodecylbenzenesulphonate was isolated (W51), and it was identified as a Pseudomonas aeruginosa strain. A faster growing derivative was selected (W51D) after enrichment in batch culture under microaerobic conditions, using the surfactant as the sole source of carbon and energy. Strain W51D is the first microorganism reported to degrade at least 70% of a branched-chain alkylbenzenesulphonate mixture and to be resistant to high concentrations of this surfactant. The ability to degrade the surfactant was shown to be transferred by conjugation to other P. aeruginosa strains and to an Escherichia coli strain.

Key words

Dodecylbenzenesulphonate Pseudomonas aeruginosa surfactant biodegradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abril, M.-A., Michán, C., Timmis, K.N., & Ramos, J.L. 1989 Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of Bacteriology 171, 6782–6790.Google Scholar
  2. Alexander, M. 1973 Nonbiodegradable and other recalcitrant molecules. Biotechnology and Bioengineering 15, 611–647.Google Scholar
  3. Boyer, H.B., & Roulland-Dussoix, D. 1969 A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 4, 459–472.Google Scholar
  4. Burlage, R.S., Hooper, S.W., & Sayler, G.S. 1989 The TOL (pWWO) catabolic plasmid. Applied and Environmental Microbiology 55, 1323–1328.Google Scholar
  5. Cain, R.B. 1987 Biodegradation of anionic surfactants. Biochemical Society Transactions 15 (supplement), 7–22.Google Scholar
  6. Cain, R.B. 1994 Biodegradation of detergents. Current Opinions in Biotechnology 5, 266–274.Google Scholar
  7. Costerton, J.W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D., & James, G. 1994 Biofilms, the customized microniche. Journal of Bacteriology 176, 2137–2142.Google Scholar
  8. Dodgson, K.S., & White, G.F. 1983 Some microbial enzymes involved in the biodegradaton of sulfated surfactants. Topics in Enzyme and Fermentation Biotechnology 7, 90–155.Google Scholar
  9. Eckhardt, T. 1978 A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1, 584–588.Google Scholar
  10. Fall, R.R., Brown, J.L., & Schaeffer, T.L. 1979 Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Applied and Environmental Microbiology 38, 715–722.Google Scholar
  11. Frantz, B., & Chakrabarty, A.M. 1986 Degradative plasmids in Pseudomonas. In The Bacteria. Volume X. The Biology of Pseudomonas. ed Sokatch, J.R., & Ornston, L.N., pp. 265–293. Orlando, FL: Academic Press Inc.Google Scholar
  12. Greek, B.F. 1991 Sales of detergents growing despite recession. Chemical Engineering News 69, 25–52.Google Scholar
  13. Hayashi, K. 1975 A rapid determination of sodium dodecyl sulfate with methylene blue. Analytical Biochemistry 67, 503–506.Google Scholar
  14. Jiménez, L., Breen, A., Thomas, N., Federle, T.W., & Sayler, G.S. 1991 Mineralization of linear alkylbenzene sulfonate by a fourmember aerobic bacterial consortium. Applied and Environmental Microbiology 57, 1566–1569.Google Scholar
  15. Kertesz, M.A., Kölbener, P., Stockinger, H., Beil, S., & Cook, A.M. 1994 Desulfonation of linear alkylbenzenesulphonate surfactants and related compounds in bacteria. Applied and Environmental Microbiology 60, 2296–2303.Google Scholar
  16. Marqués, S., & Ramos, J.L. 1993 Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Molecular Microbiology 9, 923–929.Google Scholar
  17. Miller, J.H. 1972 Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York: Cold Spring Harbor Laboratory Press.Google Scholar
  18. Nickel, J.C., Ruseska, I., Wright, J.B., & Costerton, J.W. 1985 Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrobial Agents and Chemotherapy 27, 619–624.Google Scholar
  19. Noel, K.D., Sánchez, A., Fernández, L., Leemans, J., & Cevallos, M.A. 1984 Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. Journal of Bacteriology 158, 148–155.Google Scholar
  20. Payne, W.J., & Feisal, V.E. 1963 Bacterial utilization of dodecyl sulfate and dodecylbenzene sulfonate. Applied Microbiology 11, 339–344.Google Scholar
  21. Pirnik, M.P. 1977 Microbial oxidation of methyl branched alkanes. Critical Reviews in Microbiology 5, 413–422.Google Scholar
  22. Ramos-González, M.-I., Duque, E., & Ramos, J.L. 1991 Conjugational transfer of recombinant DNA in cultures and in soils: Host range of Pseudomonas putida TOL plasmids. Applied and Environmental Microbiology 57, 3020–3027.Google Scholar
  23. Rosenberg, C., Casse-Delbart, F., Dusha, I., David, M., & Boucher, C. 1982 Megaplasmid in the plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum. Journal of Bacteriology 150, 402–406.Google Scholar
  24. Schaeffer, T.L., Cantwell, S.G., Brown, J.L., Watt, D.S., & Fall, R.R. 1979 Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Applied and Environmental Microbiology 38, 742–746.Google Scholar
  25. Sigoillot, J.-C., & Nguyen, M.-H. 1992 Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater. Applied and Environmental Microbiology 58, 1308–1312.Google Scholar
  26. Smith, M.R. 1990 The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1, 191–206.Google Scholar
  27. Swisher, R.D. 1963 Biodegradation of ABS in relation to chemical structure. Journal of Water Pollution Control Federation 35, 877–892.Google Scholar
  28. Thomas, O.R.T., & White, G.F. 1991 Immobilization of the surfactant-degrading bacterium Pseudomonas C12B in polyacrylamide gel. III Biodegradation specificity for raw surfactants and industrial wastes. Enzyme and Microbial Technology 13, 338–343.Google Scholar
  29. Worsey, M.J., & Williams, P.A. 1975 Metabolism of toluene and the xylenes by Pseudomonas putida (arvilla) mt-2 Evidence for a new function of the TOL plasmid. Journal of Bacteriology 127, 7–13.Google Scholar
  30. Zhang, Y., & Miller, R.M. 1992 Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant. Applied and Environmental Microbiology 58, 3276–3282.Google Scholar

Copyright information

© Rapid Science Publishers 1996

Authors and Affiliations

  • G. Soberón-Chávez
  • J. Campos
  • A. Haïdour
  • J. L. Ramos
  • J. Ortigoza

There are no affiliations available

Personalised recommendations