Probability Theory and Related Fields

, Volume 82, Issue 3, pp 451–487 | Cite as

Spectral representations of infinitely divisible processes

  • Balram S. Rajput
  • Jan Rosinski


The spectral representations for arbitrary discrete parameter infinitely divisible processes as well as for (centered) continuous parameter infinitely divisible processes, which are separable in probability, are obtained. The main tools used for the proofs are (i) a “polar-factorization” of an arbitrary Lévy measure on a separable Hilbert space, and (ii) the Wiener-type stochastic integrals of non-random functions relative to arbitrary “infinitely divisible noise”.


Hilbert Space Stochastic Process Probability Theory Statistical Theory Spectral Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ash, R.: Real analysis and probability. New York: Academic Press 1972Google Scholar
  2. 2.
    Bretagnolle, J., Dacunha-Castelle, D., Krivine, J.L.: Lois stables et espaces L p. Ann. Inst. H. Poincaré B 2, 231–259 (1966)Google Scholar
  3. 3.
    Cambanis, S., Soltani, A.R.: Prediction of stable processes: Spectral and moving average representation. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 593–612 (1984)Google Scholar
  4. 4.
    Cambanis, S., Miamee, A.G.: On prediction of harmonizable stable processes. Sankhya (in press)Google Scholar
  5. 5.
    Cambanis, S., Hardin, Jr., C.D., Weron, A.: Ergodic properties of stationary stable processes. Stochastic Prob. Appl. 24, 1–18 (1987)Google Scholar
  6. 6.
    Cambanis, S.: Complex symmetric stable variables and processes. Contribution to statistics: essays in honour of N.L. Johnson, P.K. Sen (ed.). New York: North Holland 1983Google Scholar
  7. 7.
    Hardin, Jr., C.D.: Skewed stable variables and processes. Center for stochastic processes tech. report no. 79, Univ. of North Carolina (1984)Google Scholar
  8. 8.
    Hardin, Jr., C.D.: On the spectral representation of symmetric stable processes. J. Multivariate Anal. 12, 385–401 (1982)Google Scholar
  9. 9.
    Hosoya, Y.: Harmonizable stable processes, Z. Wahrscheinlichkeitstheor. Verw. Geb. 60, 517–533 (1982)Google Scholar
  10. 10.
    Jurek, J.Z., Rosinski, J.: Continuity of certain random integral mappings and the uniform integrability of infinitely divisible measures, Teoria Veroyat. i ec Prim. 33, 560–572 (1988)Google Scholar
  11. 11.
    Kallenberg, O.: Random measures, 3rd ed. New York: Academic Press 1983Google Scholar
  12. 12.
    Kallenberg, O.: Spreading and predictable sampling for exchangeable processes. Ann. Probab. 16, 508–534 (1988)Google Scholar
  13. 13.
    Kuelbs, J.: A representation theorem for symmetric stable processes and stable measures on H. z. Wahrscheinlichkeits. Verw. Geb. 26, 259–271 (1973)Google Scholar
  14. 14.
    Lévy, P.: Theorie de l'Addition de variables Aléatoriores. Paris: Bautier-Villors 1937Google Scholar
  15. 15.
    Maruyama, G.: Infinitely divisible processes. Theor. Prob. Appl. 15, 3–23 (1970)Google Scholar
  16. 16.
    Musielak, J.: Orlicz spaces and modular spaces. Lect. Notes Math., vol. 1034. New York Berlin Heidelberg: Springer 1983Google Scholar
  17. 17.
    Parthasarathy, K.R.: Probability measures on metric spaces. New York: Academic Press 1967Google Scholar
  18. 18.
    Prékopa, A.: On stochastic set functions I. Acta Math. Acad. Sci. Hung. 7, 215–262 (1956)Google Scholar
  19. 19.
    Prékopa, A.: On stochastic set functions II, III. Acta Math. Acad. Sci. Hung. 8, 337–400 (1957)Google Scholar
  20. 20.
    Rajput, B.S., Rama-Murthy, K.: Spectral representations of semi-stable processes, and semistable laws on Banach spaces. J. Mult. Anal. 21, 139–157 (1987)Google Scholar
  21. 21.
    Rajput, B.S., Rama-Murthy, K.: On the spectral representations of complex semistable and other infinitely divisible stochastic processes. Stoch. Proc. Appl. 26, 141–159 (1987)Google Scholar
  22. 22.
    Rootzen, H.: Extremes of moving averages of stable processes. Ann. Probab. 6, 847–869 (1978)Google Scholar
  23. 23.
    Rosinski, J.: Bilinear random integrals. Dissertationes Mathematicae CCLIX (1987)Google Scholar
  24. 24.
    Rosinski, J.: Random integrals of Banach space valued functions. Studia Math. 78, 15–38 (1985)Google Scholar
  25. 25.
    Rosinski, J.: On stochastic integral representation of stable processes with sample path in Banach spaces. J. Mult. Anal. 20, 277–302 (1986)Google Scholar
  26. 26.
    Rosinski, J., Woyczynski, W.A.: On Itô stochastic integration with respect to p-stable motion: inner clock, integrability of sample paths, double and multiple integrals. Ann. Probab. 14, 271–286 (1986)Google Scholar
  27. 27.
    Schilder, M.: Some structure theorems for the symmetric stable laws. Ann. Math. Stat. 41, 412–421 (1970)Google Scholar
  28. 28.
    Schriber, M.: Quelques remarques sur les caracterisations des espaces L p, 0<p<1. Ann. Inst. H. Poincaré 8, 83–92 (1972)Google Scholar
  29. 29.
    Urbanik, K.: Random measures and harmonizable sequences. Studia Math. 31, 61–88 (1968)Google Scholar
  30. 30.
    Urbanik, K., Woyczynski, W.A.: Random integrals and Orlicz spaces. Bull. Acad. Polon. Sci. 15, 161–169 (1967)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Balram S. Rajput
    • 1
  • Jan Rosinski
    • 1
  1. 1.Department of MathematicsUniversity of Tennessee at KnoxvilleKnoxvilleUSA

Personalised recommendations