Metabolism of hyperthermophiles

  • P. Schönheit
  • T. Schäfer
Special Topic Review

Abstract

Hyperthermophiles are characterized by a temperature optimum for growth between 80 and 110°C. They are considered to represent the most ancient phenotype of living organisms and thus their metabolic design might reflect the situation at an early stage of evolution. Their modes of metabolism are diverse and include chemolithoautotrophic and chemoorganoheterotrophic. No extant phototrophic hyperthermophiles are known. Lithotrophic energy metabolism is mostly anaerobic or microaerophilic and based on the oxidation of H2 or S coupled to the reduction of S, SO inf4 sup2- , CO2 and NO inf3 sup- but rarely to O2. the substrates are derived from volcanic activities in hyperthermophilic habitats. The lithotrophic energy metabolism of hyperthermophiles appears to be similar to that of mesophiles. Autotrophic CO2 fixation proceeds via the reductive citric acid cycle, considered to be one of the first metabolic cycles, and via the reductive acetyl-CoA/carbon monoxide dehydrogenase pathway. The Calvin cycle has not been found in hyperthermophiles (or any Archaea). Organotrophic metabolism mainly involves peptides and sugars as substrates, which are either oxidized to CO2 by external electron acceptors or fermented to acetate and other products. Sugar catabolism in hyperthermophiles involves non-phosphorylated versions of the Entner-Doudoroff pathway and modified versions of the Embden-Meyerhof pathway. The ‘classical’ Embden-Meyerhof pathway is present in hyperthermophilic Bacteria (Thermotoga) but not in Archaea. All hyperthermophiles (and Archaea) tested so far utilize pyruvate:ferredoxin oxidoreductase for acetyl-CoA formation from pyruvate. Acetyl-CoA oxidation in anaerobic sulphur-reducing and aerobic hyperthermophiles proceeds via the citric acid cycle; in the hyperthermophilic sulphate-reducer Archaeoglobus an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway is operative. Acetate formation from acetyl-CoA in Archaea, including hyperthermophiles, is catalysed by acetyl-CoA synthetase (ADP-forming), a novel prokarvotic enzyme involved in energy conservation. In Bacteria, including the hyperthermophile Thermotoga, acetyl-CoA conversion to acetate involves two enzymes, phosphate acetyltransferase and acetate kinase.

Key words

Acetate formation acetyl-CoA oxidation Archaea Bacteria chemolithoautotroph chemoorganoheterotroph glycolytic pathway hyperthermophiles metabolic pathways peptide metabolism sugar metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, R.D. 1991 The biology of Giardia spp. Microbiological Reviews 55, 706–732.Google Scholar
  2. Adams, M.W.W. 1990 The metabolism of hydrogen by extremely thermophilic, sulphur-dependent bacteria. FEMS Microbiology Reviews 75, 219–238.Google Scholar
  3. Adams, M.W.W. 1993 Enzymes and proteins from organisms that grow near and above 100°C. Annual Review of Microbiology 47, 627–658.Google Scholar
  4. Altekar, W. & Rajagopalan, R. 1990 Ribulose bisphosphate carboxylase activity in halophilic Archaebacteria. Archives of Microbiology 153, 169–174.Google Scholar
  5. Anemüller, S. & Schäfer, G. 1990 Cytochrome aa 3 from Sulfolobus acidocaldarius. A single-subunit, quinol-oxidizing archaebacterial terminal oxidase. European Journal of Biochemistry 191, 297–305.Google Scholar
  6. Anemüller, S., Schmidt, C.L., Pacheco, I., Schäfer, G. & Teixeira, M. 1994 A cytochrome aa 3-type quinol oxidase from Desulfurolobus ambivalens, the most acidophilic archaeon. FEMS Microbiology Letters 117, 275–280.Google Scholar
  7. Anemüller, S., Schmidt, C.L., Schäfer, G. & Teixeira, M. 1993 Evidence for a Rieske-type FeS center in the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Letters 318, 61–64.Google Scholar
  8. Aono, S., Bryant, F.O. & Adams, M.W.W. 1989 A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. Journal of Bacteriology 171, 3433–3439.Google Scholar
  9. Bartels, M. 1989 Glukoseabbau über einen modifizierten Entner-Doudoroff Weg bei dem thermoacidophilen archaebacterium Sulfolobus acidocaldarius. Ph.D. Thesis, Universität Lübeck, Germany.Google Scholar
  10. Beh, M., Strauss, G., Huber, R., Stetter, K.O. & Fuchs, G. 1993 Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Archives of Microbiology 160, 306–311.Google Scholar
  11. Belkin, S. & Jannasch, H.W. 1985 A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Archives of Microbiology, 141, 181–186.Google Scholar
  12. Belkin, S., Wirsen, C.O. & Jannasch, H.W. 1986 A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Applied and Environmental Microbiology 51, 1180–1185.Google Scholar
  13. Blamey, J.M. & Adams, M.W.W. 1993 Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochimica et Biophysica Acta 1161, 19–27.Google Scholar
  14. Blamey, J.M. & Adams, M.W.W. 1994 Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. Biochemistry 33, 1000–1007.Google Scholar
  15. Blaut, M., Müller, V. & Gottschalk, G. 1992 Energetics of methanogenesis studied in vesicular systems. Journal of bioenergetics and Biomembranes 24, 529–546.Google Scholar
  16. Blöchl, E., Keller, M., Wächtershäuser, G. & Stetter, K.O. 1992 Reactions depending on iron sulphide and linking geochemistry with biochemistry. Proceedings of the National Academy of Sciences of the United States of America 89, 8117–8120.Google Scholar
  17. Blöchl, E., Burggraf, S., Fiala, G., Lauerer, G., Huber, G., Huber, R., Rachel, R., Segerer, A., Stetter, K.O. & Völkl, P. 1995 Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World Journal of Microbiology and Biotechnology 11, 26–56.Google Scholar
  18. Bock, A.-K., Prieger-Kraft, A. & Schönheit, P. 1994 Pyruvate—a novel substrate for growth and methane formation in Methanosarcina barkeri. Archives of Microbiology 161, 33–46.Google Scholar
  19. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Kostrikina, N.A., Chernych, N.A. & Zavarzin, G.A. 1990 Thermoproteus uzoniesis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Archives of Microbiology 154, 556–559.Google Scholar
  20. Bonch-Osmolovskaya, E.A., Slesarev, A.I., Miroshnichenko, M.L., Svetlichnaya, T.P. & Alekseev, V.A. 1988 Characteristics of Desulfurococcus amylolyticus n.sp. — a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island. Mikrobiologiya 57, 94–101.Google Scholar
  21. Bonch-Osmolovskaya, E.A. & Stetter, K.O. 1991 Interspecies hydrogen transfer in cocultures of thermophilic Archaea. Systematic and Applied Microbiology 14, 205–208.Google Scholar
  22. Bouthier De La Tour, C., Portemer, C., Huber, R., Forterre, P. & Duguet, M. 1991 Reverse gyrase in thermophilic eubacteria. Journal of Bacteriology 173, 3921–3923.Google Scholar
  23. Bouthier De La Tour, C., Portemer, C., Nadal, M., Stetter, K.O., Forterre, P. & Duguet, M. 1990 Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. Journal of Bacteriology 172, 6803–6808.Google Scholar
  24. Bowien, B. 1989 Molecular biology of carbon dioxide assimilation in aerobic chemolithotrophs. In Autotrophic Bacteria, eds Schlegel, H.G., Bowien, B. pp. 437–460. Madison: Science Tech.Google Scholar
  25. Breitung, J., Börner, G., Scholz, S., Linder, D., Stetter, K.O. & Thauer, R.K. 1992 Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran: tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. European Journal of Biochemistry 210, 971–981.Google Scholar
  26. Breitung, J., Schmitz, R.A., Stetter, K.O. & Thauer, R.K. 1991 N 5, N 10-Methenyltetrahydromethanopterin cyclohydrolase from the extreme thermophile Methanopyrus kandleri: increase of catalytic efficiency (k cat/K M) and thermostability in the presence of salts. Archives of Microbiology 156, 517–524.Google Scholar
  27. Brock, T.D., Brock, K.M., Belly, R.T. & Weiss, R.L. 1972 Sulfolobus: a new genus of sulphur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology 84, 54–68.Google Scholar
  28. Bryant, F.O. & Adams, M.W.W. 1989 Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. Journal of Biological Chemistry 264, 5070–5079.Google Scholar
  29. Budgen, N. & Danson, M.J. 1986 Metabolism of glucose via a modified Entner-Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum. FEBS Letters 196, 207–210.Google Scholar
  30. Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R. & Stetter, K.O. 1990a Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Systematic and Applied Microbiology 13, 263–269.Google Scholar
  31. Burggraf, S., Jannasch, H.W., Nicolaus, B. & Stetter, K.O. 1990b Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Applied and Environmental Microbiology 13, 24–28.Google Scholar
  32. Burggraf, S., Olsen, G.J., Stetter, K.O. & Woese, C.R. 1992 A phylogenetic analysis of Aquifex pyrophilus. Systematic and Applied Microbiology 15, 352–356.Google Scholar
  33. Burggraf, S., Stetter, K.O., Rouviere, P. & Woese, C.R. 1991 Methanopyrus kandleri: an Archael methanogen unrelated to all other known methanogens. Systematic and Applied Microbiology 14, 346–351.Google Scholar
  34. Childers, S.E., Vargas, M. & Noll, K.M. 1992 Improved methods for cultivation of the extremely thermophilic bacterium Thermotoga neapolitana. Applied and Environmental Microbiology 58, 3949–3953.Google Scholar
  35. Clark, T.R., Baldi, F. & Olson, G.J. 1993 Coal depyritization by the thermophilic archaeon Metallosphaera sedula. Applied and Environmental Microbiology 59, 2375–2379.Google Scholar
  36. Consalvi, V., Chiaraluce, R., Politi, L., Gambacorta, A., De Rosa, M. & Scandurra, R. 1991a Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. European Journal of Biochemistry 196, 459–467.Google Scholar
  37. Consalvi, V., Chiaraluce, R., Politi, L., Vaccaro, R., De Rosa, M. & Scandurra, R. 1991b Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. European Journal of Biochemistry 202, 1189–1196.Google Scholar
  38. Costantino, H.R., Brown, S.H. & Kelly, R.M. 1990 Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115°C. Journal of Bacteriology 172, 3654–3660.Google Scholar
  39. Dahl, C., Koch, H.-G., Keuken, O. & Trüper, H.G. 1990 Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeoglobus fulgidus. FEMS Microbiology Letters 67, 27–32.Google Scholar
  40. Dahl, C., Kredich, N.M., Deutzmann, R. & Trüper, H.G. 1993 Dissmilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. Journal of General Microbiology 139, 1817–1828.Google Scholar
  41. Danson, M.J. 1988 Archaebacteria: the comparative enzymology of their central metabolic pathways. Advances in Microbial Physiology 29, 166–231.Google Scholar
  42. Danson, M.J. 1989 Central metabolism of the archaebacteria: an overview. Canadian Journal of Microbiology 35, 58–64.Google Scholar
  43. Danson, M.J. 1993 Central metabolism of the Archaea. In The Biochemistry of Archaea (Archaeabacteria), eds Kates, M., Kushner, D.J. & Matheson, A.T. pp. 1–24. Amsterdam: Elsevier Science.Google Scholar
  44. Danson, M.J., Black, S.C., Woodland, D.L. & Wood, P.A. 1985 Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS Letters 179, 120–124.Google Scholar
  45. De Rosa, M., Gambacorta, A. & Bu'lock, J.D. 1975 Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. Journal of General Microbiology 86, 156–164.Google Scholar
  46. De Rosa, M., Gambacorta, A., Nicolaus, B., Giardina, P., Poerio, E. & Buonocore, V. 1984 Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfulobus solfataricus. Biochemical Journal 224, 407–414.Google Scholar
  47. Decker, K., Jungerman, K. & Thauer, R.K. 1970 Energy production in anaerobic organisms. Angewandte Chemie (International edition) 9, 138–158.Google Scholar
  48. Diekert, G. 1990 CO2 reduction to acetate in anaerobic bacteria. FEMS Microbiology Reviews 87, 391–396.Google Scholar
  49. DiMarco, A.A., Bobik, T.A. & Wolfe, R.S. 1991 Unusual coenzymes of methanogenesis. Annual Review of Biochemistry 59, 355–394.Google Scholar
  50. Drobner, E., Huber, H., Wächtershäuser, G., Rose, D. & Stetter, K.O. 1990 Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346, 742–744.Google Scholar
  51. Eggen, R.I.L., Geerlings, A.C.M., Waldkötter, K., Antranikian, G. & De Vos, W.M. 1993 The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. Gene 132, 143–148.Google Scholar
  52. Emmel, T., Sand, W., König, W.A. & Bock, E. 1986 Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. Journal of General Microbiology 132, 3415–3420.Google Scholar
  53. Erauso, G., Reysenbach, A.-L., Godfroy, A., Meunier, J.-R., Crump, B., Partensky, F., Baross, J.A., Marteinsson, V., Barbier, G., Pace, N.R. & Prieur, D. 1993 Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Archives of Microbiology 160, 338–349.Google Scholar
  54. Fabry, S., Lehmacher, A., Bode, W. & Hensel, R. 1988 Expression of the glyceraldehyde-3-phosphate dehydrogenase gene from the extremely thermophilic archaebacterium Methanothermus fervidus in E. coli. FEBS Letters 237, 213–217.Google Scholar
  55. Fiala, G. & Stetter, K.O. 1986 Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Archives of Microbiology 145, 56–61.Google Scholar
  56. Fiala, G., Stetter, K.O., Jannasch, H.W., Langworthy, T.A. & Madon, J. 1986 Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Systematic and Applied Microbiology 8, 106–113.Google Scholar
  57. Fischer, F., Zillig, W., Stetter, K.O. & Scheiber, G. 1983 Chemolitho-autotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301, 511–513.Google Scholar
  58. Fuchs, G. 1986 CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiology Reviews 39, 181–213.Google Scholar
  59. Fuchs, G. 1989 Alternative pathways of autotrophic CO2 fixation. In Autotrophic Bacteria, eds Schlegel, H.G. & Bowien, B. pp. 365–382. Madison, WI: Science Tech.Google Scholar
  60. Fuchs, G., Ecker, A. & Strauss, G. 1992 Bioenergetics and autotrophic metabolism of chemolithotrophic archaebacteria. In The archaebacteria: Biochemistry and Biotechnology, eds Danson, M.J., Hough, D.W. & Lunt, G.G. pp. 23–39. London: Portland Press.Google Scholar
  61. Fuchs, G. & Stupperich, E. 1985 Evolution of autotrophic CO2 fixation. In Evolution of Prokaryotes, FEMS Symposium No. 29, eds Schleifer, K.H. & Stackebrandt, E. pp. 235–250. London: Academic Press.Google Scholar
  62. Fuchs, G. & Stupperich, E. 1986 Carbon assimilation pathways in archaebacteria. Systematic and Applied Microbiology 7, 364–369.Google Scholar
  63. Gambacorta, A., Trincone, A., Nicolaus, B., Lama, L. & De Rosa, M. 1994 Unique features of lipids of Archaea. Systematic and Applied Microbiology 16, 518–527.Google Scholar
  64. Giardina, P., De Biasi, M.-G., De Rosa, M., Gambacorta, A. & Buonocore, V. 1986 Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochemical Journal 239, 517–522.Google Scholar
  65. Grossebüter, W. & Görisch, H. 1985 Partial purification and properties of citrate synthases from the thermoacidophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. Systematic and Applied Microbiology 6, 119–124.Google Scholar
  66. Grossebüter, W., Hartl, T., Görisch, H. & Stezowski, J.J. 1986 Purification and properties of malate dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biologische Chemie Hoppe-Seyler 367, 457–463.Google Scholar
  67. Hartl, T., Grossebüter, W., Görisch, H. & Stezowski, J.J. 1987 Cristalline NAD/NADP-dependent malate dehydrogenase; the enzyme from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biologische Chemie Hoppe-Seyler 368, 259–267.Google Scholar
  68. Hecht, K., Wrba, A. & Jaenicke, R. 1989 Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity. European Journal of Biochemistry 183, 69–74.Google Scholar
  69. Hensel, R. & Jakob, I. 1994 Stability of glyceraldehyde-3-phosphate dehydrogenases from hyperthermophilic Archaea at high temperature. Systematic and Applied Microbiology 16, 742–745.Google Scholar
  70. Hensel, R. & König, H. 1988 Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiology Letters 49, 75–79.Google Scholar
  71. Hensel, R., Laumann, S., Lang, J., Heumann, H. & Lottspeich, F. 1987 Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. European Journal of Biochemistry 170, 325–333.Google Scholar
  72. Honka, E., Fabry, S., Niermann, T., Palm, P. & Hensel, R. 1990 Properties and primery structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. European Journal of Biochemistry 188, 623–632.Google Scholar
  73. Huber, G., Drobner, E., Huber, H. & Stetter, K.O. 1992a Growth by aerobic oxidation of molecular hydrogen in Archaea—a metabolic property so far unknown for this domain. Systematic and Applied Microbiology 15, 502–504.Google Scholar
  74. Huber, G., Spinnler, C., Gambacorta, A. & Stetter, K.O. 1989a Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermophilic archaebacteria. Systematic and Applied Microbiology 12, 38–47.Google Scholar
  75. Huber, G. & Stetter, K.O. 1991 Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic Archaeal species of metal-mobilizers. Systematic and Applied Microbiology 14, 372–378.Google Scholar
  76. Huber, R., Kristjánsson, J.K. & Stetter, K.O. 1987 Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Archives of Microbiology, 149, 95–101.Google Scholar
  77. Huber, R., Kurr, M., Jannasch, H.W. & Stetter, K.O. 1989b A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342, 833–834.Google Scholar
  78. Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C.R., Sleytr, U.B. & Stetter, K.O. 1986 Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Archives of Microbiology 144, 324–333.Google Scholar
  79. Huber, R. & Stetter, K.O. 1992a The order Thermotogales. In The Prokaryotes, Vol. 1, 2nd edn, eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.-H. pp. 3809–3815 New York: Springer-Verlag.Google Scholar
  80. Huber, R. & Stetter, K.O. 1992b The order Thermoproteales. In The Prokaryotes, Vol. 1, 2nd edn, eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.-H. pp. 676–808 New York: Springer-Verlag.Google Scholar
  81. Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., König, H., Rachel, R., Rockinger, I., Fricke, H. & Stetter, K.O. 1992b Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Systematic and Applied Microbiology 15, 340–351.Google Scholar
  82. Huber, R., Woese, C.R., Langworthy, T.A., Fricke, H. & Stetter, K.O. 1989c Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘Thermotogales’. Systematic and Applied Microbiology 12, 32–37.Google Scholar
  83. Huber, R., Woese, C.R., Langworthy, T.A., Kristjánnson, J.K. & Steetter, K.O. 1990 Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘Thermotogales’. Archives of Microbiology 154, 105–111.Google Scholar
  84. Huser, B.A., Patel, B.K.C., Daniel, R.M. & Morgan, H.W. 1986 Isolation and characterisation of a novel extremely thermophilic, anaerobic, chemoorganotrophic eubacterium. FEMS Microbiology Letters 37, 121–127.Google Scholar
  85. Jannasch, H.W., Huber, R., Belkin, S. & Stetter, K.O. 1988a Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Archives of Microbiology 150, 103–104.Google Scholar
  86. Jannasch, H.W., Wirsen, C.O., Molyneaux, S.J. & Langworthy, T.A. 1988b Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Applied and Environmental Microbiology 54, 1203–1209.Google Scholar
  87. Janssen, P.H. & Morgan, H.W. 1992 Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiology Letters 96, 213–218.Google Scholar
  88. Johnson, J.L., Rajagopalan, K.V., Mukund, S. & Adams, M.W.W. 1993 Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea. Journal of Biological Chemistry 268, 4848–4852.Google Scholar
  89. Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R. & Wolfe, R.S. 1983 Methanococcus jannascchii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Archives of Microbiology 136, 254–261.Google Scholar
  90. Juszczak, A., Aono, S. & Adams, M.W.W. 1991 The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. Journal of Biological Chemistry 266, 13834–13841.Google Scholar
  91. Kandler, O. 1992 Where next with the archaebacteria? Biochemistry Society Symposium 58, 195–207.Google Scholar
  92. Kandler, O. 1993 The early diversification of life. ed Bengsten, S. pp. 152–160. New York: Colombia University.Google Scholar
  93. Kandler, O.K. & Stetter, K.O. 1981 Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway. Zentralblatt für Bakteriologie und Hygiene, I. Abteilung, Originale C 2, 111–121.Google Scholar
  94. Kanodia, S. & Roberts, M.F. 1983 Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proceedings of the National Academy of Sciences of the United States of America 80, 5217–5221.Google Scholar
  95. Kengen, S.W.M., De Bok, F.A.M., Van Loo, N.-D., Dijkema, C., Stams, A.J.M. & De Vos, W.M. 1994 Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP dependent kinases during sugar fermentation by Pyrococcus furiosus. Journal of Biological Chemistry, 269, 17537–17541Google Scholar
  96. Kengen, S.W.M., Luesink, E.J., Stams, A.J.M., & Zehnder, A.J.B. 1993 Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. European Journal of Biochemistry 213, 305–312.Google Scholar
  97. Kengen, S.W.M. & Stams, A.J.M. 1994a Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Archives of Microbiology 161, 168–175.Google Scholar
  98. Kengen, S.W.M. & Stams, A.J.M. 1994b Growth and energy conservation in batch cultures of Pyrococcus furiosus. FEMS Microbiolgy Letters 117, 305–310.Google Scholar
  99. Kerscher, L., Nowitzki, S. & Oesterhelt, D. 1982 Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid:ferredoxin oxidoreductases. European Journal of Biochemistry 128, 223–230.Google Scholar
  100. Kerscher, L. & Oesterhelt, D. 1981 Purification and properties of two 2-oxoacid: ferredoxin oxidoreductases from Halobacterium halobium. European Journal of Biochemistry 116, 587–594.Google Scholar
  101. Kerscher, L. & Oesterhelt, D. 1982 Pyruvate:ferredoxin oxidoreductase—new findings on an ancient enzyme. Trends in Biochemical Sciences 7, 371–374.Google Scholar
  102. Kerscher, L., Oesterhelt, D., Cammack, R. & Hall, D.O. 1976 A new plant type ferredoxin from halobacteria. European Journal of Biochemistry 71, 101–107.Google Scholar
  103. Kikuchi, A., Shibata, T. & Nakasu, S. 1986 Reverse gyrase and DNA supercoiling in Sulfolobus. Systematic and Applied Microbiology 7, 72–78.Google Scholar
  104. Klein, A.R., Breitung, J., Linder, D., Stetter, K.O. & Thauer, R.K. 1993b N 5, N 10-Methenyltetrahydromethanopterin cyclohydrolase from the extremely thermophilic sulfate reducing Archaeoglobus fulgidus: comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri. Archives of Microbiology 159, 213–219.Google Scholar
  105. Klein, A.R., Koch, J., Stetter, K.O. & Thauer, R.K. 1993a Two N 5, N 10-methylenetetrahydromethanopterin dehydrogenases in the extreme thermophile Methanopyrus kandleri: characterization of the coenzyme F420-dependent enzyme. Archives of Microbiology 160, 186–192.Google Scholar
  106. Kletzin, A. 1989 Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. Journal of Bacteriology 171, 1638–1643.Google Scholar
  107. Kletzin, A. 1994 Sulfur oxidation and reduction in Archaea: sulfur oxygenase/-reductase and hydrogenases from the extremely thermophilic and facultatively anaerobic archaeon Desulfurolobus ambivalens. Systematic and Applied Microbiology 16, 534–543.Google Scholar
  108. König, H., Messner, P. & Stetter, K.O. 1988 The fine structure of the fibers of Pyrodictium occultum. FEMS Microbiology Letters 49, 107–212.Google Scholar
  109. Konings, W.N., Tolner, B., Speelmans, G., Elferink, M.G.L., De Wit, J.G. & Driessen, A.J.M. 1992 Energy transduction and transport processes in thermophilic bacteria. Journal of Bioenergetics and Biomembranes 24, 601–609.Google Scholar
  110. Kristjánsson, J.K. & Stetter, K.O. 1992 Thermophilic bacteria. In Thermophilic Bacteria, ed Kristjánsson, J.K. pp. 1–18. Boca Raton: CRC Press.Google Scholar
  111. Kunow, J., Linder, D., Stetter, K.O. & Thauer, R.K. 1994 F420H2:quinone oxidoreductase from Archaeoglobus fulgidus: characterization of a membane bound multisubunit complex containing FAD and iron-sulfur clusters. European Journal of Biochemistry, in press.Google Scholar
  112. Kunow, J., Schwörer, B., Stetter, K.O. & Thauer, R.K. 1993 A F420-dependent NADP reductase in the extremely thermophilic sulfate-reducing Archaeoglobus fulgidus. Archives of Microbiology 160, 199–205.Google Scholar
  113. Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjánsson, J.K. & Stetter, K.O. 1991 Methanopyrus kandleri, gen. and sp. nov. represents a novel group of thermophilic methanogens, growing at 110°C. Archives of Microbiology 156, 239–247.Google Scholar
  114. Larsson, L., Olsson, G., Holst, O. & Karlsson, H.T. 1990 Pyrite oxidation by thermophilic archaebacteria. Applied and Environmental Microbiology 56, 697–701.Google Scholar
  115. Lauerer, G., Kristjánsson, J.K., Langworthy, T.A., König, H. & Stetter, K.O. 1986 Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Systematic and Applied Microbiology 8, 100–105.Google Scholar
  116. Lill, U., Lefrank, S., Henschen, A. & Eggerer, H. 1992 Conversion, by limited proteolysis, of an archaebacterial citrate synthase into essentially a citryl-CoA hydrolase. European Journal of Biochemistry 208, 459–466.Google Scholar
  117. Leuschner, C. & Antranikian, G. 1995 Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World Journal of Microbiology and Biotechnology 11.Google Scholar
  118. Lindmark, D.G. 1980 Energy metabolism of the anaerobic protozoon Giardia lamblia. Molecular and Biochemical Parasitology 1, 1–12.Google Scholar
  119. Lübben, M., Castresana, J. & Warne, A. 1994 Terminal oxidases of Sulfolobus: genes and proteins. Systematic and Applied Microbiology 16, 556–559.Google Scholar
  120. Lübben, M. & Schäfer, G. 1989 Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an Fo-related N,N′-dicyclohexylcarbodiimide-binding proteolipid. Journal of Bacteriology 171, 6106–6116.Google Scholar
  121. Ma, K., Linder, D., Stetter, K.O. & Thauer, R.K. 1991b Purification and properties of N 5, N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri. Archives of Microbiology 155, 593–600.Google Scholar
  122. Ma, K., Schicho, R.N., Kelly, R.M. & Adams, M.W.W. 1993 Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proceedings of the National Academy of Sciences of the United States of America 90, 5341–5344.Google Scholar
  123. Ma, K., Zimgibl, C., Linder, D., Stetter, K.O. & Thauer, R.K. 1991a N 5, N 10-Methylenetetrahydromethanopterin dehydrogenase (H2-forming) from the extreme thermophile Methanopyrus kandleri. Archives of Microbiology 156, 43–48.Google Scholar
  124. Malik, B., Su, W.-W., Wald, H.L., Blumentals, I.I. & Kelly, R.M. 1989 Growth and gas production for hyperthermophilic archaebacterium, Pyrococcus furiosus. Biotechnology and Bioengineering 34, 1050–1057.Google Scholar
  125. Maras, B., Consalvi, V., Chiaraluce, R., Politi, L., De Rosa, M., Bossa, F., Scandurra, R. & Barra, D. 1992 The protein sequence of glutamate dehydrogenase from Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Is the presence of N-ɛ-methyllysine related to thermostability? European Journal of Biochemistry 203, 81–87.Google Scholar
  126. Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., Neuner, A., Kostrikina, N.A., Chemych, N.A. & Alekseev, V.A. 1989 Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Systematic and Applied Microbiology 12, 257–262.Google Scholar
  127. Moll, R. & Schäfer, G. 1991 Purification and characterization of an archaebacterial succinate dehydrogenase complex from the plasma membrane of the thermoacidophile Sulfolobus acidocaldarius. European Journal of Biochemistry 201, 593–600.Google Scholar
  128. Möller-Zinkhan, D. & Thauer, R.K. 1990 Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Archives of Microbiology 153, 215–218.Google Scholar
  129. Möller-Zinkhan, D., Börner, G. & Thauer, R.K. 1989 Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Archives of Microbiology 152, 362–368.Google Scholar
  130. Muir, J.M., Hough, D.W. & Danson, M.J. 1994 Citrate synthases from the Archaea. Systematic and Applied Microbiology 16, 528–533.Google Scholar
  131. Mukund, S. & Adams, M.W.W. 1991 The novel tungsten-ironsulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Journal of Biological Chemistry 266, 14208–14216.Google Scholar
  132. Mukund, S. & Adams, M.W.W. 1993 Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcos litoralis. A role for tungsten in peptide catabolism. Journal of Biological Chemistry 268, 13592–13600.Google Scholar
  133. Müller, M. 1988 Energy metabolism of protozoa without mitochondria. Annual Review of Microbiology 42, 456–488.Google Scholar
  134. Müller, V., Blaut, M. & Gottschalk, G. 1993 Bioenergetics of methanogenesis. In Methanogenesis. Part II, ed Ferry, J.G. pp. 360–406. New York: Chapman & Hall.Google Scholar
  135. Neuner, A., Jannasch, H.W., Belkin, S. & Stetter, K.O. 1990 Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Archives of Microbiology 153, 205–207.Google Scholar
  136. Norris, P.R. 1992 Thermoacidophilic archaebacteria: potential applications. In The Archaebacteria: Biochemistry and Biotechnology, eds Danson, M.J., Hough, D.W. & Lunt, G.G., pp. 171–180. London: Portland Press.Google Scholar
  137. Norris, P.R. & Owen, J.P. 1993 Mineral sulphide oxidation by enrichment cultures of novel thermoacidophilic bacteria. FEMS Microbiology Reviews 11, 51–56.Google Scholar
  138. Parameswaran, A.K., Provan, C.N., Sturm, F.J. & Kelly, R.M. 1987 Sulfur reduction by the extremely thermophilic archaebacterium Pyrodictium occultum. Applied and Environmental Microbiology 53, 1690–1693.Google Scholar
  139. Paulsen, J., Kröger, A. & Thauer, R.K. 1986 ATP-driven succinate oxidation in the catabolism of Desulphuromonas acetoxidans. Archives of Microbiology 144, 78–83.Google Scholar
  140. Pihl, T.D., Black, L.K., Schulman, B.A. & Maier, R.J. 1992 Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. Journal of Bacteriology 174, 137–143.Google Scholar
  141. Pihl, T.D. & Maier, R.J. 1991 Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii. Journal of Bacteriology 173, 1839–1844.Google Scholar
  142. Plaga, W., Lottspeich, F. & Oesterhelt, D. 1992 Improved purification, crystallization and primary structure of pyruvate: ferredoxin oxidoreductase from Halobacterium halobium. European Journal of Biochemistry 205, 391–397.Google Scholar
  143. Pley, U., Schipka, J., Gambacorta, A., Jannasch, H.W., Fricke, H., Rachel, R. & Stetter, K.O. 1991 Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine Archaeal hyperthermophile growing at 110°C. Systematic and Applied Microbiology 14, 245–253.Google Scholar
  144. Pronk, J.T., Meulenberg, R., Hazeu, W., Bos, P. & Kuenen, J.G. 1990 Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiology Reviews 75, 293–306.Google Scholar
  145. Puchegger, S., Redl, B. & Stöffler, G. 1990 Purification and properties of a thermostable fumarate hydratase from the archaeobacterium Sulfolobus solfataricus. Journal of General Microbiology 136, 1537–1541.Google Scholar
  146. Pusheva, M.A., Slobodkin, A.I. & Bonch-Osmolovskaya, E.A. 1992 Investigation of hydrogenase activity of the extremely thermophilic archaebacterium Thermococcus stetteri. Microbiologiya 60, 5–11.Google Scholar
  147. Raven, N., Ladwa, N., Cossar, D. & Sharp, R. 1992 Continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus. Applied and Environmental Microbiology 38, 263–267.Google Scholar
  148. Reeves, R.E., Warren, L.G., Susskind, B. & Lo, H.S. 1977 An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica: pyruvate synthase and a new acetate thiokinase. Journal of Biological Chemistry 252, 726–731.Google Scholar
  149. Robb, F.T., Park, J.-B. & Adams, M.W.W. 1992 Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochimica et Biophysica Acta 1120, 267–272.Google Scholar
  150. Rospert, S., Breitung, J., Ma, K., Schwörer, B., Zirngibl, C., Thauer, R.K., Linder, D., Huber, R. & Stetter, K.O. 1991 Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophile Methanopyrus kandleri. Archives of Microbiology 156, 49–55.Google Scholar
  151. Rüdiger, A., Ogbonna, J.C., Märkl, H. & Antranikian, G. 1992 Effect of gassing, agitation, substrate supplementation and dialysis on the growth of an extremely thermophilic archaeon Pyrococcus woesei. Applied Microbiology and Biotechnology 37, 501–504.Google Scholar
  152. Sanangelantoni, A.M., Forlani, G., Ambroselli, F., Cammarano, P. & Tiboni, O. 1992 The glnA gene of the extremely thermophilic eubacterium Termotoga maritima: cloning, primary structure, and expression in Escherichia coli. Journal of General Microbiology 138, 383–393.Google Scholar
  153. Schäfer, G., Anemüller, S., Moll, R., Gleissner, M. & Schmidt, C.L. 1994a Has Sulfolobus an archaic respiratory system? Structure, function and genes of its components. Systematic and Applied Microbiology 16, 544–555.Google Scholar
  154. Schäfer, G., Anemüller, S., Moll, R., Meyer, W. & Lübben, M. 1990 Electron transport and energy conservation in the archaebacterium Sulfolobus acidocaldarius. FEMS Microbiology Reviews 75, 335–348.Google Scholar
  155. Schäfer, G. & Meyering-Vos, M. 1992 The plasma membrane ATPase of archaebacteria. A chimeric energy converter. Annals of the New York Academy of Sciences 671, 293–309.Google Scholar
  156. Schäfer, S., Barkowski, C. & Fuchs, G. 1986 Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Archives of Microbiology 146, 301–308.Google Scholar
  157. Schäfer, T. & Schönheit, P. 1991 Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalysed by an acetyl-CoA synthetase (ADP-forming). Archives of Microbiology 155, 366–377.Google Scholar
  158. Schäfer, T. & Schönheit, P. 1992 Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaen Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Archives of Microbiology 158, 188–202.Google Scholar
  159. Schäfer, T. & Schönheit, P. 1993 Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway. Archives of Microbiology 159, 354–363.Google Scholar
  160. Schäfer, T., Selig, M. & Schönheit, P. 1993 Acetyl-CoA synthetase (ADP-forming) in Archaea, a novel enzyme involved in acetate formation and ATP synthesis. Archives of Microbiology 159, 72–83.Google Scholar
  161. Schäfer, T., Xavier, K.B., Santos, H. & Schönheit, P. 1994b Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities. FEMS Microbiology Letters 121, 107–114.Google Scholar
  162. Schauder, R. & Kröger, A. 1993 Bacterial sulphur respiration. Archives of Microbiology 159, 491–497.Google Scholar
  163. Schauder, R. & Müller, E. 1993 Polysulfide as a possible for sulfurreducing bacteria. Archives of Microbiology 160, 377–382.Google Scholar
  164. Schauder, R., Widdel, F. & Fuchs, G. 1987 Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfurobacter hydrogenophilus. Archives of Microbiology 148, 218–225.Google Scholar
  165. Schicho, R.N., Ma, K., Adams, M.W.W. & Kelly, R.M. 1993 Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology 175, 1823–1830.Google Scholar
  166. Schink, B. 1992 Syntrophism among prokaryotes. In The Prokaryotes, vol. 1, 2nd edn, eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.-H., pp. 276–299. New York: Springer-Verlag.Google Scholar
  167. Schinkinger, M.F., Redl, B. & Stöffler, G. 1991 Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus. Biochimica et Biophysica Acta 1073, 142–148.Google Scholar
  168. Schmitz, R.A., Linder, D., Stetter, K.O. & Thauer, R.K. 1991 N 5, N 10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus. Archives of Microbiology 156, 427–434.Google Scholar
  169. Schönheit, P. 1993 Bioenergetics and transport in methanogens and related thermophilic Archaea. In The Biochemistry of Archaea (Archaeabacteria), eds Kates, M., Kushner, D.J. & Matheson, A.T. pp. 113–173. Amsterdam: Elsevier Science.Google Scholar
  170. Schröder, C., Selig, M. & Schönheit, P. 1994 Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Archives of Microbiology 161, 460–470.Google Scholar
  171. Schwörer, B., Breitung, J., Klein, A.R., Stetter, K.O. & Thauer, R.K. 1993 Formylmethanofuran: tetrahydromethanopterin formyltransferase and N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea. Archives of Microbiology 159, 225–232.Google Scholar
  172. Seely, R.J. & Fahrney, D.E. 1983 A novel diphospho-P,P′-diether from Methanobacterium thermoautotrophicum. Journal of Biological Chemistry 258, 10835–10838.Google Scholar
  173. Segerer, A., Neuner, A., Kristjánsson, J.K. & Stetter, K.O. 1986 Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. International Journal of Systematic Bacteriology 36, 559–564.Google Scholar
  174. Segerer, A., Stetter, K.O. & Klink, F. 1985 Two contrary model of chemolithotrophy in the same archaebacterium. Nature 313, 787–789.Google Scholar
  175. Segerer, A.H. & Stetter, K.O. 1992 The order Sulfolobales. In The Prokaryotes, vol.1, 2nd edn, eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.-H. pp. 684–701. New York: Springer-Verlag.Google Scholar
  176. Segerer, A.H., Trincone, A., Gahrtz, M. & Stetter, K.O. 1991 Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. International Journal of Systematic Bacteriology 41, 495–501.Google Scholar
  177. Selig, M. & Schönheit, P. 1994 Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Archives of Microbiology, 162, 286–294.Google Scholar
  178. Shiba, H., Kawasumi, T., Igarashi, Y., Kodama, T. & Minoda, Y. 1985 The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Archives of Microbiology 141, 189–203.Google Scholar
  179. Siebers, B. & Hensel, R. 1993 Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax. FEMS Microbiology Letters 111 1–8.Google Scholar
  180. Smith, E.T., Blamey, J.M. & Adams, M.W.W. 1994 Pyruvate:ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga maritima, have different catalytic mechanisms. Biochemistry 33, 1008–1016.Google Scholar
  181. Soutschek, E., Winter, J., Schindler, F. & Kandler, O. 1984 Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Systematic and Applied Microbiology 5, 377–390.Google Scholar
  182. Speich, N. & Trüper, H.G. 1988 Adenylylsulfate reductase in a dissimilatory sulfate-reducing archaebacterium. Journal of General Microbiology 134, 1419–1425.Google Scholar
  183. Sprott, D.G., Ekiel, I. & Patel, G.B. 1993 Metabolic pathways in Methanococcus jannaschii and other methanogenic bacteria. Applied and Environmental Microbiology 59, 1092–1098.Google Scholar
  184. Stetter, K.O. 1982 Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300, 258–260.Google Scholar
  185. Stetter, K.O. 1988 Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Systematic and Applied Microbiology 10, 172–173.Google Scholar
  186. Stetter, K.O. 1992 The genus Achaeoglobus. In The Prokaryotes, Vol. 1, 2nd edn, eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W., & Schleifer, K.-H., pp. 707–711. New York: Springer-Verlag.Google Scholar
  187. Stetter, K.O. 1993 Life at the upper temperature border. In Frontiers of Life, eds Tran Thanh Van, J., Tran Thanh Van, K., Mounolon, J.C., Schneider, J. & McKay, C. pp. 195–219. Gifsur-Yvette, Editions Frontiers.Google Scholar
  188. Stetter, K.O., Fiala, G., Huber, G. & Segerer, A. 1990 Hyperthermophilic microorganisms. FEMS Microbiology Reviews 75, 117–124.Google Scholar
  189. Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H. & Vance, I. 1993 Hyperthermophilic achaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.Google Scholar
  190. Stetter, K.O., König, H. & Stackebrandt, E. 1983 Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Systematic and Applied Microbiology 4, 535–551.Google Scholar
  191. Stetter, K.O., Lauerer, G., Thomm, M. & Neuner, A. 1987 Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236, 822–824.Google Scholar
  192. Stetter, K.O., Segerer, A., Zillig, W., Huber, G., Fiala, G., Huber, R. & König, H. 1986 Extremely thermophilic sulfur-metabolizing archaebacteria. Systematic and Applied Microbiology 7, 393–397.Google Scholar
  193. Stetter, K.O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Zillig, W., Janecovic, D., König, H., Palm, P. & Wunderl, S. 1981 Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralblatt für Bakteriologie und Hygiene, I. Abteilung, Originale C 2, 166–178.Google Scholar
  194. Stezowski, J.J., Englmaier, R., Galdiga, C., Hartl, T., Rommel, I., Dauter, Z., Görisch, H., Grossebüter, W., Wilson, K. & Musil, D. 1989 Preliminary X-ray crystallographic study of malate dehydrogenases from the thermoacidophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. Journal of Molecular Biology 208, 507–508.Google Scholar
  195. Stouthammer, A.H. 1979 The search for correlation between theoretical and experimental growth yields. In Microbial Biochemistry, Vol. 21, ed Quale, J.R., pp. 1–47. Baltimore: University Park Press.Google Scholar
  196. Strauss, G., Eisenreich, W., Bacher, A. & Fuchs, G. 1992 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducting archaebacterium Thermoproteus neutrophilus and in phototrophic eubacterium Chloroflexus aurantiacus. European Journal of Biochemistry 205, 853–866.Google Scholar
  197. Sutherland, K.J., Henneke, C.M., Towner, P., Hough, D.W. & Danson, M.J. 1990 Citrate synthase from the thermophilic archaebacterium Thermoplasma acidophilum. Cloning and sequencing of the gene. European Journal of Biochemistry 194, 839–844.Google Scholar
  198. Svetlichnyi, V.A., Slesarev, A.I., Svetlichnaya, T.P. & Zavarzin, G.A. 1987 Caldococcus litoralis gen. nov. sp. nov. — a new marine, extremely thermophilic, sulfur-reducing archaebacterium. Mikrobiologiya 56, 831–838.Google Scholar
  199. Tewes, F.J. & Thauer, R.K. 1980 Regulation of ATP-synthesis in glucose fermenting bacteria involved in interspecies hydrogen transfer. In Anaerobes and Anaerobic Infections, eds Gottschalk, G., Pfennig, N. & Werner, H. pp. 269–276. Stuttgart, New York: Gustav Fischer Verlag.Google Scholar
  200. Thauer, R.K. 1988 Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. European Journal of Biochemistry 176, 497–508.Google Scholar
  201. Thauer, R.K. 1989 Energy metabolism of sulfate-reducing bacteria. In Autotrophic Bacteria, eds Schlegel, H.G. & Bowien, B. pp. 397–413. Madison, WI Science Tech.Google Scholar
  202. Thauer, R.K., Hedderich, R. & Fischer, R. 1993 Reactions and enzymes involved in methanogenesis from CO2 and H2. Bioenergetics of methanogenesis. In Methanogenesis. Part II, ed Ferry, J.G. pp. 209–252. New York: Chapman & Hall.Google Scholar
  203. Thauer, R.K., Jungermann, K. & Decker, K. 1977 Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Review 41, 100–180.Google Scholar
  204. Thauer, R.K., Möller-Zinkhan, D. & Spormann, A.M. 1989 Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annual Review of Microbiology 43, 43–67.Google Scholar
  205. Thauer, R.K. & Morris, G. 1984 Metabolism of chemotrophic anaerobes: old views and new aspects. In The Microbe. Part II. Prokaryotes and Eukaryotes, Society for General Microbiology Symposium 36, eds Kelly, D.P. & Carr, N.G. pp. 23–168. Cambridge: Cambridge University Press.Google Scholar
  206. Thurl, S., Buhrow, I. & Schäfer, W. 1985 Quinones from Archaeabacteria. I. New types of menaquinones from the thermophilic archaebacterium Thermoproteus tenax. Biologische Chemie Hoppe-Seyler 366, 1079–1083.Google Scholar
  207. Tiboni, O., Cammarano, P. & Sanagelantonio, A.M. 1993 Cloning and sequencing of the gene encoding glutamine synthetase I from the archaebacterium Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. Journal of Bacteriology 175, 2961–2969.Google Scholar
  208. Tindall, B.J. 1989 Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiology Letters 60, 251–254.Google Scholar
  209. Tindall, B.J., Stetter, K.O. & Collins, M.D. 1989 A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus. Journal of General Microbiology 135, 693–696.Google Scholar
  210. Tindall, B.J., Wray, V., Huber, R. & Collins, M.D. 1991 A novel, fully saturated cyclic menaquinone in the archaebacterium Pyrobaculum organotrophum. Systematic and Applied Microbiology 14, 218–221.Google Scholar
  211. Tomlinson, G.A., Koch, T.K. & Hochstein, L.I. 1974 The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Canadian Journal of Microbiology 20, 1085–1091.Google Scholar
  212. Tomschy, A., Glockshuber, R. & Jaenicke, R. 1993 Functional expression of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima in Escherichia coli. Authenticity and kinetic properties of the recombinant enzyme. European Journal of Biochemistry 214, 43–50.Google Scholar
  213. Trincone, A., Gambacorta, A., Lantotti, V. & De Rosa, M. 1986 A new benzol[1,2-b;4,5b′]dithiophene-4,8-quinone from the archaebacterium Sulfolobus solfataricus. Journal of the Chemical Society, Chemical Communications 1986, 733.Google Scholar
  214. Trincone, A., Lanzotti, V., Nicolaus, B., Zillig, W., De Rosa, M. & Gambacorta, A. 1989 Comparative lipid composition of aerobically and anaerobically grown Desulfurolobus ambivalens, an autotrophic thermophilic archaebacterium. Journal of General Microbiology 135, 2751–2757.Google Scholar
  215. Van De Casteele, M., Demarez, M., Legrain, C., Glansdorff, N. & Piérard, A. 1990 Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria. Journal of General Microbiology 136, 1177–1182.Google Scholar
  216. Völkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A. & Stetter, K.O. 1993 Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environmental Microbiology 59, 2918–2926.Google Scholar
  217. Wächtesshäuser, G. 1988 Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology 10, 207–210.Google Scholar
  218. Wächtershäuser, G. 1990 Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences of the United States of America 87, 200–204.Google Scholar
  219. Wächtershäuser, G. 1992 Groundworks for an evolutionary biochemistry: the iron-sulphur world. Progress in Biophysics and Molecular Biology 58, 85–202.Google Scholar
  220. Wakao, H., Wakagi, T. & Oshima, T. 1987 Purification and properties of a NADH dehydrogenase from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Journal of Biochemistry 102, 255–262.Google Scholar
  221. Weiss, D.S. & Thauer, R.K. 1993 Methanogenesis and the unity of biochemistry. Cell 72, 819–822.Google Scholar
  222. Widdel, F. & Hansen, T.A. 1992 The dissimilatory sulfate- and sulfur-reducing bacteria. In The Prokaryotes, Vol. 1, 2nd edn, eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.-H. pp. 583–624. New York: Springer-Verlag.Google Scholar
  223. Windberger, E., Huber, R., Trincone, A., Fricke, H. & Stetter, K.O. 1989 Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Archives of Microbiology 51, 506–512.Google Scholar
  224. Woese, C.R. 1987 Bacterial evolution. Bacteriological Reviews 51, 221–271.Google Scholar
  225. Woese, C.R., Achenbach, L., Rouviere, P. & Mandelco, L. 1991 Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artefacts. Systematic and Applied Microbiology 14, 364–371.Google Scholar
  226. Woese, C.R., Kandler, O. & Wheelis, M.L. 1990 Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87, 4576–4579.Google Scholar
  227. Wood, A.P., Kelly, D.P. & Norris, P.R. 1987 Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Archives of Microbiology 146, 382–389.Google Scholar
  228. Wood, H.G., Ragsdale, S.W. & Pezacka, E. 1986 The acetyl-CoA pathway of autotrophic growth. FEMS Microbiology Reviews 39, 345–362.Google Scholar
  229. Wrba, A., Schweiger, A., Schultes, V., Jaenicke, R. & Závodszky, P. 1990 Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 29, 7584–7592.Google Scholar
  230. Zeikus, J.G., Fuchs, G., Kenealy, W. & Thauer, R.K. 1977 Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. Journal of Bacteriology 132, 604–613.Google Scholar
  231. Zhao, H., Wood, A.G., Widdel, F. & Bryant, M.P. 1988 An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Archives of Microbiology 150, 178–183.Google Scholar
  232. Zillig, W. 1991 Comparative biochemistry of Archaea and Bacteria. Current Opinion in Genetics and Development 1, 544–551.Google Scholar
  233. Zillig, W., Gierl, A., Schreiber, G., Wunderl, S., Janekovic, D., Stetter, K.O. & Klenk, H.P. 1983a The archaebacterium Thermophilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Systematic and Applied Microbiology 4, 79–87.Google Scholar
  234. Zillig, W., Holz, I., Janekovic, D., Klenk, H.-P., Imsel, E., Trent, J., Wunderl, S., Forjaz, V.H., Coutinho, R. & Ferreira, T. 1990 Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. Journal of Bacteriology 172, 3959–3965.Google Scholar
  235. Zillig, W., Holz, I., Janekovic, D., Schäfer, W. & Reiter, W.D. 1983b The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Systematic and Applied Microbiology 4, 88–94.Google Scholar
  236. Zillig, W., Holz, I., Klenk, H.-P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E. & Haas, B. 1987 Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Systematic and Applied Microbiology 9, 62–70.Google Scholar
  237. Zillig, W., Holz, I. & Wunderl, S. 1991 Hyperthermus butylicus gen. nov., sp. nov., a hyperthermophilic, anaerobic, peptide-fermenting, facultatively H2S-generating archaebacterium. International Journal of Systematic Bacteriology 41, 169–170.Google Scholar
  238. Zillig, W., Stetter, K.O., Prangishvilli, D., Schäfer, W., Wunderl, S., Janekovic, D., Holz, I. & Palm, P. 1982 Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfurrespiring. Zentralblatt für Bakteriologie und Hygiene, I. Abteilung, Originale C 3, 304–317.Google Scholar
  239. Zillig, W., Stetter, K.O., Schäfer, W., Janekovic, D., Wunderl, S., Holz, I. & Palm, P. 1981 Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralblatt für Bakteriologie und Hygiene, I. Abteilung, Originale C 2, 205–227.Google Scholar
  240. Zillig, W., Yeats, S., Holz, I., Böck, A., Rettenberger, M., Gropp, F. & Simon, G. 1986 Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Systematic and Applied Microbiology 8, 197–203.Google Scholar
  241. Zwickl, P., Fabry, S., Bogedain, C., Haas, A. & Hensel, R. 1990 Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. Journal of Bacteriology 172, 4329–4338.Google Scholar

Copyright information

© Rapid Communications of Oxford Ltd 1995

Authors and Affiliations

  • P. Schönheit
  • T. Schäfer

There are no affiliations available

Personalised recommendations