The morphology of the eyes of Limulus

II. Ommatidia of the compound eye
  • Wolf H. Fahrenbach


The Limulus ommatidium consists of 4 to 20 retinula cells surrounding the dendrite of the eccentric cell. Adjoining membranes are differentiated into the microvillous rhabdome in the central area of the ommatidium. Three types of pigment cells envelop the sensory cells. The distal pigment cells cover the periphery of the distal half of the ommatidium; proximal pigment cells (beneath the base of the ommatidium) and intraommatidial pigment cells provide glial wrapping for the sensory cells, the partitions between them, and the peripheral loose framework. Processes of the overlying cone cells penetrate into the ommatidium and lie at the edges of the rhabdomal fins. Numerous neurosecretory axons terminate at all levels of the ommatidium on pigment cells, conveyed there either by enveloping pigment cells or by separate neuroglial cells. Tight junctions in the ommatidium are confined to the contacts between rhabdomal miorovilli. The periphery of the rhabdome is surrounded by continuous adhering junctions except at the tip and exit of the eccentric cell dendrite. The discussion centers on possible correlations between known neurophysiological characteristics of ommatidial cells and significant morphological aspects of the ommatidium, such as distribution of supporting cells, extracellular space, and junctional specializations.


Tight Junction Adhere Junction Sensory Cell Pigment Cell Morphological Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, L., M. M. Dewey, and W. Berger: Propagation of action potentials and the structure of the nexus in cardiac muscle. J. gen. Physiol. 48, 797–823 (1965).Google Scholar
  2. Behrens, M. E., and V. J. Wulff: Light initiated responses of retinula and eccentric cells in the Limulus lateral eye. J. gen. Physiol. 48, 1081–1093 (1965).Google Scholar
  3. Bennett, M. V. L., Y. Nakajima, and G. D. Pappas: Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J. Neurophysiol. 30, 161–179 (1967a).Google Scholar
  4. —: Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. J. Neurophysiol. 30, 209–235 (1967b).Google Scholar
  5. —, G. D. Pappas, E. Aljure, and Y. Nakajima: Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J. Neurophysiol. 30, 180–209 (1967c).Google Scholar
  6. —, M. Gimenez, and Y. Nakajima: Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J. Neurophysiol. 30, 236–300 (1967d).Google Scholar
  7. Berlin, J. D.: The localization of acid mucopolysaccharides in the Golgi complex of intestinal goblet cells. J. Cell Biol. 32, 760–768 (1967).Google Scholar
  8. Bonnett, H. T. J., and E. H. Newcomb: Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma (Wien) 62, 59–75 (1966).Google Scholar
  9. Bullock, T. H., and G. A. Horridge: Structure and function in the nervous systems of invertebrates. 1719 pp. San Francisco: W. H. Freeman & Co. 1965.Google Scholar
  10. Dowling, J. E.: Discrete potentials in the dark-adapted eye of the crab Limulus. Nature (Lond.) 217, 28–31 (1968).Google Scholar
  11. Dumont, J. N., E. Anderson, and E. Chomyn: The anatomy of the peripheral nerve and its ensheathing artery in the horseshoe crab, Xiphosura (Limulus) polyphemus. J. Ultrastruct. Res. 13, 38–64 (1965).Google Scholar
  12. Eguchi, E., and T. H. Waterman: Fine structure patterns in crustacean rhabdoms. In: The functional organization of the compound eye (C. G. Bernhard, ed.) p. 105–124. Oxford: Pergamon Press 1966.Google Scholar
  13. —: Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79, 209–229 (1967).Google Scholar
  14. —: Cellular basis for polarized light perception in the spider crab, Libinia. Z. Zellforsch. 84, 87–101 (1968).Google Scholar
  15. Fahrenbach, W. H.: The fine structure of a nauplius eye. Z. Zellforsch. 62, 182–197 (1964).Google Scholar
  16. —: The morphology of the eyes of Limulus. I. Cornea and epidermis of the compound eye. Z. Zellforsch. 87, 278–291 (1968).Google Scholar
  17. —, L. B. Sanderberg, and E. G. Cleary: Ultrastructural studies on early elastogenesis. Anat. Rec. 155, 563–576 (1966).Google Scholar
  18. Farquhar, M. G., and G. E. Palade: Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).Google Scholar
  19. Fernández-Morán, H.: Cell membrane ultrastructure. Low temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar system. Circulation 26, 1039–1065 (1962).Google Scholar
  20. Friend, D. S., and M. G. Farquhar: Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol. 35, 357–376 (1967).Google Scholar
  21. Fuortes, M. G. F.: Electric activity of cells in the eye of Limulus. Amer. J. Ophthal. 46, 210–223 (1958).Google Scholar
  22. —: Initiation of impulses in visual cells of Limulus. J. Physiol. (Lond.) 148, 14–28 (1959).Google Scholar
  23. Furshpan, E., and D. D. Potter: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145, 289–325 (1959).Google Scholar
  24. Goldsmith, T. H.: Fine structure of the retinulae in the compound eye of the honeybee. J. Cell Biol. 14, 494 (1962).Google Scholar
  25. Gordon, G. B., L. R. Miller, and K. G. Bensch: Studies on the intracellular digestive process in mammalian tissue culture cells. J. Cell Biol. 25, Pt. 2, 41–55 (1965).Google Scholar
  26. Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. 188 pp. Göttingen: Vandenhoek & Ruprecht 1879.Google Scholar
  27. Griffin, J. L.: Fixation and visualization of microfilaments and microtubules and their significance in the movement of four types of ameboid cells (Abstr.). J. Cell Biol. 27, 39A (1965).Google Scholar
  28. Harper, E., S. Seifter, and B. Scharrer: Electron microscopic and biochemical characterization of collagen in blattarian insects. J. Cell Biol. 33, 385–393 (1967).Google Scholar
  29. Hartline, H. K., N. A. Coulter, and H. G. Wagner: Effects of electric current on responses of single photoreceptor units in the eye of Limulus. Fed. Proc. 11, 65–66 (1952a).Google Scholar
  30. —, G. A. Wagner, and E. F. Macnichol: The peripheral origin or nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952b).Google Scholar
  31. —, H. G. Wagner, and F. Ratliff: Inhibition in the eye of Limulus. J. gen. Physiol. 39, 651–673 (1956).Google Scholar
  32. Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VII. Von den Arthropoden-Augen. Z. wiss. Zool. 70, 347–473 (1901).Google Scholar
  33. Horridge, G. A.: The retina of the locust. In: the functional organization of the compound eye (C. G. Bernhard, ed.), p. 513–541. Oxford: Pergamon Press 1966.Google Scholar
  34. —, and P. B. T. Barnard: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci. 107, 135–136 (1965).Google Scholar
  35. Hubbard, R., and G. Wald: Visual pigment of the horseshoe crab, Limulus polyphemus. Nature (Lond.) 186, 212–215 (1960).Google Scholar
  36. Kuffler, S. W., and D. D. Potter: Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J. Neurophysiol. 27, 290–320 (1964).Google Scholar
  37. Lane, N., L. Caro, L. R. Otero-Vilardebó, and G. C. Godman: On the site of sulfation in colonic goblet cells. J. Cell Biol. 21, 339–351 (1964).Google Scholar
  38. Lasansky, A.: Cell junctions in ommatidia of Limulus. J. Cell Biol. 33, 365–384 (1967).Google Scholar
  39. Lipetz, L. E.: Response pathways to electric stimulation in the Limulus eye. Am. J. Ophthal. 46, Ser. 3, No. 3, pt. 2, 5–19 (1958).Google Scholar
  40. —: The Limulus eye as an information converter: Mechanisms for the transfer of information from the light image to the optic nerve discharge. Advanc. biol. med. Phys. 7, 131–173 (1960).Google Scholar
  41. Macnichol, E. F.: Visual receptors as biological transducers. In: Molecular structure and functional activity of nerve cells (R. G. Grenell and L. J. Mullins, ed.), p. 1–34. Washington: American Institute of Biological Sciences Publications 1956.Google Scholar
  42. Manton, I.: Observations on the fine structure of the zoospore and young germling of Stigeoclonium. J. exp. Bot. 15, 399–411 (1964).Google Scholar
  43. Maunsbach, A. B.: The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J. Ultrastruct. Res. 15, 242–282 (1966a).Google Scholar
  44. —: The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. II. Effects of varying osmolality, ionic strength, buffer system and fixative concentration of glutaraldehyde solutions. J. Ultrastruct. Res. 15, 283–309 (1966b)Google Scholar
  45. Melamed, J., and O. Trujillo-Cenóz: The fine structure of the visual system of Lycosa (Araneae: Lycosidae). I. Retina and optic nerve. Z. Zellforsch. 74, 12–31 (1966).Google Scholar
  46. Miller, W. H.: The neural structure and function of an invertebrate eye (Abstr.) Bull. Johns Hopk. Hosp. 91, 72 (1952).Google Scholar
  47. —: Comparative study of fine structure of some invertebrate photoreceptors (Abstr.). Science 126, 1234 (1957a).Google Scholar
  48. —: Morphology of the ommatidia of the compound eye of Limulus. J. biophys. biochem. Cytol. 3, 421–427 (1957b).Google Scholar
  49. —: Fine structure of some invertebrate photoreceptors. Ann. N. Y. Acad. Sci. 74, 204–209 (1958).Google Scholar
  50. —, F. Ratliff, and H. K. Hartline: How cells receive stimuli. Sci. Amer. 205, 222–238 (1961).Google Scholar
  51. Neutra, M., and C. P. Leblond: Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J. Cell Biol. 30, 119–136 (1966a).Google Scholar
  52. —, and C. P. Leblond: Radioautographic comparison of the uptake of galactose-H3 and glucose-H3 in the Golgi region of various cells secreting glycoproteins or mucopolysaccharides. J. Cell Biol. 30, 137–150 (1966b).Google Scholar
  53. Newcomb, E. H.: A spiny vesicle in slime-producing cells of the bean root. J. Cell Biol. 35, No. 2, Pt. 1, C17-C22 (1967).Google Scholar
  54. Nicholls, J. G., and S. W. Kuffler: Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J. Neurophysiol. 27, 645–671 (1964).Google Scholar
  55. Nilsson, S. E. G.: The ultrastructure of the receptor outer segments in the retina of the leopard frog (Rana pipiens). J. Ultrastruct. Res. 12, 207–231 (1965).Google Scholar
  56. Pappas, G. D., Y. Asada, and M. V. L. Bennett: Morphological and physiological changes in junctional sites of crayfish septate axons (Abstr.). Anat. Rec. 157, 297 (1967).Google Scholar
  57. Peterson, M., and C. P. Leblond: Synthesis of complex carbohydrates in the Golgi region as shown by radioautography after injection of labeled glucose. J. Cell Biol. 21, 143–148 (1964).Google Scholar
  58. Peterson-Neutra, M.: Synthesis of complex carbohydrates in Golgi saccules: an electron microscope-autoradiographic study (Abstr.). Anat. Rec. 151, 399 (1965).Google Scholar
  59. Revel, J. P., and M. J. Karnovsky: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver (Abstr.). J. Cell Biol. 33, C7 (1967).Google Scholar
  60. Robertson, J. D.: Recent electron microscope observations on the ultrastructure of the crayfish median-to-motor giant synapse. Exp. Cell Res. 8, 226–229 (1955).Google Scholar
  61. —: Ultrastructure of excitable membranes and the crayfish median-giant synapse. Ann. N. Y. Acad. Sci. 94, 339–389 (1961).Google Scholar
  62. Rosenbluth, J.: Subsurface cisternae and their relationship to the neuronal plasma membrane. J. Cell Biol. 13, 405–421 (1962).Google Scholar
  63. Roth, T. F., and K. R. Porter: Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J. Cell Biol. 20, 313–332 (1964).Google Scholar
  64. Ruck, P.: On photoreceptor mechanisms of retinula cells. Biol. Bull. 123, 618–634 (1962).Google Scholar
  65. Smith, T. G., F. Baumann, and M. G. F. Fuortes: Electrical connections between visual cells in the ommatidium of Limulus. Science 147, 1446–1448 (1965).Google Scholar
  66. —, and J. E. Brown: A photoelectric potential in invertebrate cells. Nature (Lond.) 212, 1217–1219 (1966).Google Scholar
  67. Sorokin, S. P.: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–378 (1962).Google Scholar
  68. Stieve, H.: Interpretation of the generator potential in terms of ionic processes. Cold Spr. Harb. Symp. quant. Biol. 30, 451–456 (1965).Google Scholar
  69. Tomita, R., R. Kikuchi, and I. Tanaka: Excitation and inhibition in lateral eye of horseshoe crab. In: Electrical activity of single cells (Y. Katsuki, ed.), p. 11–23. Tokyo: Igakushoin 1960.Google Scholar
  70. Trujillo-Cenóz, O.: Some aspects of the structural organization of the arthropod eye. Cold Spr. Harb. Symp. quant. Biol. 30, 371–382 (1965).Google Scholar
  71. Waddington, C. H., and M. M. Perry: The ultra-structure of the developing eye of Drosophila. Proc. roy. Soc. B 153, 155–178 (1960).Google Scholar
  72. Watáse, S.: On the morphology of the compound eye of arthropods. Studies Biol. Lab. Johns. Hopk. Univ. 4, 387–334 (1890).Google Scholar
  73. Waterman, T. H., and C. A. G. Wiersma: The functional relation between retinal cells and optic nerve in Limulus. J. exp. Zool. 126, 59–85 (1954).Google Scholar
  74. White, R. H.: The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J. exp. Zool. 166, 405–425 (1967).Google Scholar
  75. Wolbarsht, M. L., and S. Yeandle: Visual processes in the Limulus eye. Ann. Rev. Physiol. 29, 513–542 (1967).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Wolf H. Fahrenbach
    • 1
  1. 1.Oregon Regional Primate Research CenterBeavertonUSA

Personalised recommendations