Molecular and General Genetics MGG

, Volume 211, Issue 1, pp 17–26 | Cite as

Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants

  • Peter Müller
  • Michael Hynes
  • Dieter Kapp
  • Karsten Niehaus
  • Alfred Pühler


Symbiotic mutants of Rhizobium meliloti were isolated following Tn5 mutagenesis. Besides four nodulation mutants (Nod-) unable to induce nodule formation on alfalfa, five infection mutants (Inf-), which induce the formation of root nodules without detectable infection threads or bacteroids, were obtained. The Inf- mutants were subdivided into two classes. One class contains mutants which fail to synthesize acidic exopolysaccharide (EPS-). The other class is comprised of mutants which produce excess amounts of acidic exopolysaccharide (EPS*). 13C nuclear magnetic resonance spectroscopy of the exopolysaccharide isolated from one of the latter type of Inf- mutant, 101.45, revealed that the side chain of the repeating octosaccharide unit lacks the terminal pyruvate residue. Complementing cosmids were isolated for all Inf- mutants. In the case of the Inf- EPS- mutants the complementing cosmids contain DNA segments which overlap and are part of megaplasmid 2. For two mutants the mutations were found to map on a 7.8 kb EcoRI fragment. In the case of the Inf- EPS* mutants the complementing cosmids carry chromosomal DNA. The mutations of two Inf- EPS* mutants were localized on a 6.4 kb EcoRI fragment. Coinoculation of alfalfa plants with Nod- and Inf- EPS- mutants resulted in effective symbiosis. The nodules appeared wild type and fixed nitrogen. In constrast, coinoculations with Nod- mutants and the Inf- EPS* mutant 101.45 did not result in the formation of effective nodules.

Key words

Rhizobium meliloli Infection mutants Nodulation mutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar OM, Kapp D, Pühler A (1985) Characterization of a Rhizobium meliloti fixation gene (fixF) located near the common nodulation region. J Bacteriol 164:245–254Google Scholar
  2. Aspinall GO (1982) Molecular Biology: The Polysaccharides, Vol. 1. Academic Press, New York, LondonGoogle Scholar
  3. Benn R, Günther H (1983) Moderne Pulsfolgen in der hochauflösenden NMR-Spektroskopie. Angew Chemie 95:381–411Google Scholar
  4. Borthakur D, Downie JA, Johnston AWB, Lamb J (1985) psi, a plasmid-linked Rhizobium phaseoli gene that inhibits exopolysaccharide production, and which is required for symbiotic nitrogen fixation. Mol Gen Genet 200:278–282Google Scholar
  5. Boyer HW, Roulland-Dussoix (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–468Google Scholar
  6. Casse F, Boucher C, Julliot JS, Michel M, Dénarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242Google Scholar
  7. Chakravorty AK, Zurkowski W, Shine J, Rolfe GB (1982) Symbiotic nitrogen fixation: molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation. J Mol Appl Genet 1:585–596Google Scholar
  8. Djordjevic SP, Chen H, Batley M, Redmond JW, Rolfe BG (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bacteriol 169:53–60Google Scholar
  9. Dutton GGS, Paulin M (1980a) Structure of the capsular polysaccharide of Klebsiella serotype K53. Carbohyd Res 87:107–117Google Scholar
  10. Dutton GGS, Paulin M (1980b) Structure of the capsular polysaccharide of Klebsiella K74. Carbohydr Res 87:119–127Google Scholar
  11. Dutton GGS, Savage AV (1980) Structural investigation of the capsular polysaccharide of Klebsiella serotype K12. Carbohydr Res 83:351–362Google Scholar
  12. Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83:4403–4407Google Scholar
  13. Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588Google Scholar
  14. Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT, Long SR (1985) Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4:241–248Google Scholar
  15. Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877Google Scholar
  16. Finan TM, Kunkel B, De Vos DF, Signer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72Google Scholar
  17. Gardiol AE, Hollingsworth RI, Dazzo FB (1987) Alteration of surface properties in a Tn5 mutants strain of Rhizobium trifolii 0403. J Bacteriol 169:1161–1167Google Scholar
  18. Geremia RA, Cavaignac S, Zorreguieta A, Toro N, Olivares J, Ugalde RA (1987) A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces normal exopolysaccharide but fails to form β(1-2) glucan. J Bacteriol 169:880–884Google Scholar
  19. Haas D, Holloway BW, (1976) R-factor variants with enhanced sex factor activity in Pseudomonas aeroginosa. Mol Gen Genet 144:243–251Google Scholar
  20. Hirsch AM, Long SR, Bang M, Haskins N, Ausubel F (1982) Structural studies of alfalfa roots infected with nodulation mutants of Rhizobium meliloti. J Bacteriol 151:411–419Google Scholar
  21. Horvath B, Kondorosi E, John M, Schmidt J, Török I, Györgypal Z, Barabas I, Wieneke U, Schell J, Kondorosi A (1986) Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 48:335–343Google Scholar
  22. Hu N, Messing J (1982) The making of strand-specific M13 probes. Gene 17:271–277Google Scholar
  23. Hynes MF, Simon R, Pühler A (1985) The development of plasmid free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti pasmid to eliminate pATC58. Plasmid 13:99–105Google Scholar
  24. Hynes MF, Simon R, Müller P, Niehaus K, Labes M, Pühler A (1986) The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa. Mol Gen Genet 202:356–362Google Scholar
  25. Jacobs TW, Egelhoff TT, Long SR (1985) Physical and genetic map of a Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. J Bacteriol 162:469–476Google Scholar
  26. Jansson RE, Kenne L, Lindberg B, Ljunggren H, Lönngren, J, Rudén U, Svensson S (1977) Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J Am Chem Soc 99:11, 3812–3815Google Scholar
  27. Johansen E, Finan TM, Gefter ML, Signer ER (1984) Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them. J Bacteriol 160:454–457Google Scholar
  28. Kamberger W (1979) An ouchterlony double diffusion study on the interaction between legume lectins and rhizobial cell surface antigens. Arch Microbiol 121:83–90Google Scholar
  29. Klein S, Hirsch AM, Smith CA, Signer ER (1987) Coinoculation with symbiotically defective mutants of Rhizobium meliloti. In: Verma DPS, Brisson N (eds) Molecular genetics of plantmicrobe interactions. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster, pp 179–181Google Scholar
  30. Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452Google Scholar
  31. Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235Google Scholar
  32. Leigh JA, Reed J, Walker GC (1987) Symbiotic mutants of Rhizobium meliloti which produce non-succinylated exopolysaccharide. In: Verma DPS, Brisson N (eds) Molecular genetics of plant-microbe interactions. Martinus Nijhoff Publishers. Dordrecht, Boston, Lancaster, pp 165–166Google Scholar
  33. Long SR, Buikema WJ, Ausubel FM (1982) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod- mutants. Nature 298:485–488Google Scholar
  34. Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122Google Scholar
  35. Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276Google Scholar
  36. Morrison DA (1977) Transformation in E. coli: cryogenic preservation of competent cells. J Bacteriol 132:349–351Google Scholar
  37. Müller P, Niehaus K, Pühler A (1985) Isolation and characterization of mutants of Rhizobium meliloti 2011 obtained by Tn5-mutagenesis. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff Publishers. Dordrecht Boston, Lancaster, p 138Google Scholar
  38. Nowotny A (1969) Basic exercises in immunochemistry. Springer, Heidelberg, Berlin, New YorkGoogle Scholar
  39. Priefer U (1984) Isolation of plasmid DNA. In: Pühler A, Timmis KN (eds) Advanced molecular genetics. Springer, Berlin, Heidelberg, New York, pp 14–25Google Scholar
  40. Priefer U, Simon R, Pühler A (1984) Cloning with cosmids. In: Pühler A, Timmis KN (eds) Advanced molecular genetics. Springer, Berlin, Heidelberg, New York, pp 190–201Google Scholar
  41. Pühler A, Hynes MF, Kapp D, Müller P, Niehaus K (1986) Infection mutants of Rhizobium meliloti are altered in acidic exopoly-saccharide production. In: Lugtenberg B (ed) Recognition in microbe plant symbiotic and pathogenic interaction, NATO ASI Series, Vol H 4. Springer, Berlin, Heidelberg, pp 29–37Google Scholar
  42. Rolfe BG, Shine J (1984) Rhizobium-legume symbiosis: The bacterial point of view. In: Verma DPS, Hohn T (eds) Genes involved in plant microbe interactions. Springer, Wien, New York, pp 95–128Google Scholar
  43. Rolfe BG, Gresshoff PM, Shine J (1980a) Rapid screening for symbiotic mutants of Rhizobium and white clover. Plant Sci Lett 19:277–284Google Scholar
  44. Rolfe BG, Gresshoff PM, Shine J, Vincent JM (1980b) Interaction between a non-nodulating and an ineffective mutant of Rhizobium trifolii resulting in effective (nitrogen-fixing) nodulation. Appl Environ Microbiol 39:449–452Google Scholar
  45. Roop DR, Tsai M, O'Malley BW (1980) Definition of the 5′ and 3′ ends of transcripts of the ovalbumin gene. Cell 18:63–68Google Scholar
  46. Seymour FR, Knapp RD, Bishop SH (1976) Determination of the structure of dextran by 13C-n.m.r. spectroscopy. Carbohydr Res 51:179–194Google Scholar
  47. Simon R (1984) High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420Google Scholar
  48. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791Google Scholar
  49. Smith GE, Summers MD (1980) The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl paper. Anal Biochem 109:123–129Google Scholar
  50. Sømme R (1985) The structure of the acidic exopolysaccharide produced by Rhizobium trifolii Bart A. Carbohydr Res 137:167–171Google Scholar
  51. Török I, Kondorosi E, Stepkowski T,Posfai J, Kondorosi A (1984) Nucleotide sequence of Rhizobium meliloti nodulation genes. Nucleic Acids Res 12:9509–9524Google Scholar
  52. Truchet G, Michel M, Dénarié J (1980) Sequential analysis of the organogenesis of lucerne (Medicago sativa) root nodules using symbiotically defective mutants of Rhizobium meliloti. Differentiation 16:163–172Google Scholar
  53. Truchet G, Rosenberg C, Vasse J, Julliot JS, Camut S, Dénarié J (1984) Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens: Host-specific nodulation by atypical infection. J Bacteriol 157:134–142Google Scholar
  54. Truchet G, Debelle F, Vasse J, Terzaghi B, Gernerone A-M, Rosenberg C, Batut J, Maillet F, Dénarié J (1985) Identification of a Rhizobium meliloti pSym2011 region controlling the host specificity of root hair curling and nodulation. J Bacteriol 164:1200–1210Google Scholar
  55. Vandenbosch KA, Noel KD, Kaneko Y, Newcomb EH (1985) Nodulation initiation elicited by noninfective mutants of Rhizobium phaseoli. J Bacteriol 162:950–959Google Scholar
  56. Verma DPS, Nadler K (1984) Legume-Rhizobium symbiosis: Host's point of view. In: Verma DPS, Hohn T (eds) Genes involved in microbe-plant interactions. Springer, Berlin, Heidelberg, New York, pp 57–93Google Scholar
  57. Vincent JM (1980) Factors controlling the Legume-Rhizobium symbiosis. In: Newton WE, Orme-Johnson (eds) Nitrogen fixation, Vol II. University Park Press, Baltimore, pp 103–129Google Scholar
  58. Zorreguieta A, Ugalde RA (1986) Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in \-D(1-2) glucan synthesis. J Bacteriol 167:947–951Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Peter Müller
    • 1
  • Michael Hynes
    • 1
  • Dieter Kapp
    • 1
  • Karsten Niehaus
    • 1
  • Alfred Pühler
    • 1
  1. 1.Lehrstuhl für Genetik, Fakultät für BiologieUniversität BielefeldBielefeld 1Federal Republic of Germany

Personalised recommendations