Molecular and General Genetics MGG

, Volume 214, Issue 2, pp 313–316 | Cite as

Alleviation of type I restriction in adenine methylase (dam) mutants of Escherichia coli

  • E. P. Efimova
  • E. P. Delver
  • A. A. Belogurov
Article

Summary

The host-controlled EcoK-restriction of unmodified phage λ.O is alleviated in dam mutants of Escherichia coli by 100- to 300-fold. In addition, the EcoK modification activity is substantially decreased in dam- strains. We show that type I restriction (EcoB, EcoD and EcoK) is detectably alleviated in dam mutants. However, no relief of EcoRI restriction (Type II) occurs in dam- strains and only a slight effect of dam mutation on EcoP1 restriction (Type III) is observed. We interpret the alleviation of the type I restriction in dam- strains to be a consequence of induction of the function which interferes with type I restriction systems.

Key words

DNA restriction Dam mutation Alleviation of restriction Bacteriophage λ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber W, Humbelin H, Caspers P, Reif HJ, Iida S, Meyer J (1980) Spontaneous mutations in the E. coli prophage P1 and IS-mediated processes. Cold Spring Harbor Symp Quant Biol 43:1197–1208Google Scholar
  2. Arraj JA, Marinus MG (1983) Phenotypic reversal in dam mutants of Escherichia coli K12 by recombinant plasmid containing the dam + gene. J Bacteriol 153:562–565Google Scholar
  3. Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K12. Bacteriol Rev 36:525–557Google Scholar
  4. Bale A, d'Alarcao M, Marinus MG (1979) Characterization of DNA adenine methylation mutants of Escherichia coli K12. Mutat Res 59:165–175Google Scholar
  5. Belogurov AA, Yussifov TN, Kotova VU, Zavilgelsky GB (1985) The novel gene(s) ard of plasmid pKM101: alleviation of EcoK restriction. Mol Gen Genet 198:509–513Google Scholar
  6. bertani G, Weigle JJ (1953) Host-controlled variation in bacterial viruses. J Bacteriol 65:113–121Google Scholar
  7. Braun R, Wright A (1986) DNA methylation differentially enhances the expression of one of two Escherichia coli dnaA promoters. Mol Gen Genet 202:246–250Google Scholar
  8. Day SR (1977) UV-induced alleviation of K-specific restriction of bacteriophage λ. J Virol 21:1249–1251Google Scholar
  9. Doutriaux MP, Wagner R, Radman M (1986) Mismatch-stimulated killing. Proc Natl Acad Sci USA 83:2576–2578Google Scholar
  10. Glickman BW, Radman M (1980) Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci USA 77:1063–1067Google Scholar
  11. Glickman BW, van den Elsen P, Radman M (1978) Induced mutagenesis in dam - mutants of Escherichia coli, a role of 6-methyladenine residues in mutation avoidance. Mol Gen Genet 163:307–312Google Scholar
  12. Kato T, Shinoura Y (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutation by ultraviolet light. Mol Gen Genet 156:121–131Google Scholar
  13. Lacks S, Greenberg B (1977) Complementary specificity of restriction endonuclease of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol 114:153–168Google Scholar
  14. Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22Google Scholar
  15. Lu A-L, Clark S, Modrich P (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci USA 80:4639–4643Google Scholar
  16. Marinus MG (1984) Methylation of procariotic DNA. In: Razin A, Cedar H, Riggs A (eds) DNA methylation. Springer-Verlag, New York Heidelberg Berlin, pp 81–109Google Scholar
  17. Marinus MG (1985) DNA methylation influences trpR promoter activity in Escherichia coli K12. Mol Gen Genet 200:185–186Google Scholar
  18. Marinus MG, Konrad EB (1976) Hyper-recombination in dam mutants of Escherichia coli K12. Mol Gen Genet 149:273–277Google Scholar
  19. Marinus MG, Morris NR (1974) Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol 85:309–322Google Scholar
  20. Marinus MG, Morris NR (1975) Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat Res 28:15–16Google Scholar
  21. Marinus MG, Carraway M, Frey AZ, Brown L, Arraj JA (1983) Insertion mutations in the dam gene of Escherichia coli K12. Mol Gen Genet 192:288–289Google Scholar
  22. McGraw BR, Marinus MG (1980) Isolation and characterization of Dam + revertants, and supressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K12. Mol Gen Genet 178:309–315Google Scholar
  23. Messer W, Bellekes U, Lother H (1985) Effect of dam methylation on activity of the E. coli replication origin. EMBO J 4:1327–1332Google Scholar
  24. Miller J (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  25. Mizusawa S, Court D, Gottesman S (1983) Transcription of the sulA gene and repression of lexA. J Mol Biol 171:337–343Google Scholar
  26. Peterson KR, Wertman KF, Mount DW, Marinus MG (1985) Viability of Escherichia coli K12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon. Mol Gen Genet 201:14–19Google Scholar
  27. Plasterk RH, Vollering M, Brinkman A, van de Putte P (1984) Analysis of the methylation-regulated Mu mon transcript. Cell 36:189–196Google Scholar
  28. Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M (1983) Effect of high level of DNA adenine methylation on methyldirected mismatch repair in Escherichia coli. Genetics 104:571–582Google Scholar
  29. Roberts D, Hoopes BC, McClure WR, Kleckner N (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43:117–130Google Scholar
  30. Roulland-Dussoix D, Boyer HW (1969) The Escherichia coli B restriction endonuclease. Biochim Biophys Acta, 195:219–229Google Scholar
  31. Sengstag C, Arber W (1983) IS2 insertion is a major cause of spontaneous mutagenesis of the bacteriophage P1: non-random distribution of target sites. EMBO J 2:67–71Google Scholar
  32. Smith DW, Garland AM, Herman G, Enns RE, Baker TA, Zyskind J (1985) Importance of state of methylation of oriC sites in initiation of DNA replication in E. coli. EMBO J 4:1319–1326Google Scholar
  33. Sternberg N (1985) Evidence that adenine methylation influences DNA-protein interactions in E. coli. J Bacteriol 164:490–493Google Scholar
  34. Studier FW (1975) Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J Mol Biol 94:283–295Google Scholar
  35. Toms B, Wackernagel W (1982) UV-induced alleviation of restriction in E. coli K12: Kinetics of induction, and specificity of this SOS function. Mol Gen Genet 186:111–117Google Scholar
  36. Wagner R, Meselson M (1976) Repair tracks mismatched DNA heteroduplexes. Proc Natl Acad Sci USA 73:4135–4139Google Scholar
  37. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93Google Scholar
  38. Zabeau M, Fridman S, Van Montagu M, Schell J (1980) The ral gene of phage λ I. Identification of a non-essential gene that modulates restriction and modification in Escherichia coli. Mol Gen Genet 179:63–74Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • E. P. Efimova
    • 1
  • E. P. Delver
    • 1
  • A. A. Belogurov
    • 1
  1. 1.Institute of Experimental Cardiology, National Cardiology Research CenterUSSR Academy of Medical SciencesMoscowUSSR

Personalised recommendations