Biological Cybernetics

, Volume 35, Issue 2, pp 113–124 | Cite as

Optimal response of eye and hand motor systems in pointing at a visual target

I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information
  • C. Prablanc
  • J. F. Echallier
  • E. Komilis
  • M. Jeannerod
Article

Abstract

In a task requiring an optimal hand pointing (with regards to both time and accuracy) at a peripheral target, there is first a saccade of the eye within 250 ms, followed 100 ms later by the hand movement. However the latency of the hand movement is poorly correlated with that of the eye movement. When the peripheral target is cut off at the onset of the saccade, there is no correlation between the error of the gaze position and the error of the hand pointing. This suggests an early parallel processing of the two motor outputs. The duration of hand movement does not change significantly when subjects either see or not see their hand (closed or open loop). In the open loop situation, the undershoot of the hand pointing increases with target eccentricity, whatever the subjects are allowed or not to do a saccade toward the target. It suggests that the encoding of eye position by itself is a poor index for an accurately guided movement of the hand.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.A.: A closed loop theory of motor learning. J. Mot. Behav. 3, 111–149 (1971)Google Scholar
  2. Bartz, A.E.: Eye movement latency, duration and response time as a function of angular displacement. J. Exp. Psychol. 64, 318–324 (1962)Google Scholar
  3. Bauer, J.A., Woods, G.D., Held, R.: A device for rapid recording of positioning responses in two dimensions. Behav. Res. Methods Instrum. 4, 157–159 (1969)Google Scholar
  4. Becker, W., Fuchs, A.F.: Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vision Res. 9, 1247–1258 (1969)Google Scholar
  5. Becker, W., Jürgens, R.: Saccadic reactions to double step stimuli: evidence for model feedback and continuous information uptake. In: Basic mechanisms of ocular motility and their clinical implications, pp. 519–524. Lennerstrand, G., Bach y Rita, P. (eds.) Oxford, New York: Pergamon Press 1975Google Scholar
  6. Beeler, G.W.: Stochastic processes in the human eye movement control system. Phd thesis, California Institute of Technology 1965Google Scholar
  7. Berlucchi, C., Heron, W., Hyman, R., Rizzolatti, C., Umilta, C.: Simple reaction times of ipsilateral and contralacteral hand to lateralized visual stimuli. Brain 94, 419–430 (1971)Google Scholar
  8. Brown, J.S., Knauft, E.B., Rosenbaum, G.: The accuracy of positioning reactions as a function of their direction and extent. Am. J. Psychol. 61, 167–182 (1948)Google Scholar
  9. Buisseret, P., Maffei, L.: Extraocular proprioceptive projections to the visual cortex. Exp. Brain Res. 28, 421–426 (1977)Google Scholar
  10. Conti, P., Beaubaton, D.: Utilisation des informations visuelles dans le contrôle du mouvement: Étude de la précision des pointages chez l'homme. Trav. Hum. 39, 19–32 (1976)Google Scholar
  11. Craik, K.H.W.: Theory of the human operator in control systems. I. The operator as an engineering system. Br. J. Psychol. 38, 56–61 (1947)Google Scholar
  12. Davis, R.: The human operator as a single channel information system. Quart J. Exp. Psychol. 9, 119–129 (1957)Google Scholar
  13. Echallier, J.F., Pernier, J., Prablanc, C.: Système de pilotage de stimulations et de recueil de paramètres relatifs à des réponses motrices. Int. J. Bio-Med. Comput. 9, 341–352 (1978)Google Scholar
  14. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)Google Scholar
  15. Glencross, D.J.: Control of skilled movements. Psychol. Bull. 84, 14–29 (1977)Google Scholar
  16. Granit, R.: Constant errors in the excecution and appreciation of movement. Brain 95, 649–660 (1972)Google Scholar
  17. Hallett, P.E., Lightstone, A.D.: Saccadic eye movements towards stimuli triggered by prior saccades. Vision Res. 16, 99–106 (1976)Google Scholar
  18. Held, R., Gottlieb, N.: Technique for studying adaptation to disarranged hand-eye coordination. Percept. Mot. Skills 8, 83–86 (1958)Google Scholar
  19. Helmholtz, H.: Optique physiologique. Paris: Masson 1867.Google Scholar
  20. Hick, W.E.: The discontinuous functioning of the human operator in pursuit tasks. Quart. J. Exp. Psychol. 1, 36–51 (1948)Google Scholar
  21. Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–476 (1950)Google Scholar
  22. Howarth, C.I., Beggs, W.D.A.: The relationship between speed and accuracy of movement aimed at a target. Acta Psychol. 35, 207–218 (1971)Google Scholar
  23. Knight, A.A., Dagnall, P.R.: Precision of movements. Ergonomics 10, 321–330 (1967)Google Scholar
  24. Lennie, P., Sidwell, A.: Saccadic eye movements and visual stability. Nature 275, 766–768 (1978)Google Scholar
  25. Mateeff, S.: Saccadic eye movements and localization of visual stimuli. Percept. Psychophys. 24, 215–224 (1978)Google Scholar
  26. Matin, L., Matin, E.: Visual perception of direction and voluntary saccadic eye movements. Bibl. Ophthal. 82, 358–368 (1972)Google Scholar
  27. McKay, D.M.: Theoretical models of space perception. In: Aspects of the theory of artificial intelligence. Muses, C.A. (ed.). New York: Plenum Press 1962Google Scholar
  28. McKay, D.M., Mittelstaedt, H.: Visual stability and motor control (reafference revisited). In: Cybernetics and bionics. Keidel, W.D. (ed.). Munich: Oldenbourg 1974Google Scholar
  29. Megaw, E.D.: Possible modification to a rapid ongoing programmed manual response. Brain Res. 71, 425–442 (1974)Google Scholar
  30. Merton, P.A.: Absence of consicious position sense in the human eyes. In: The oculomotor systems. Bender, M.B. (ed), pp. 314–320. New York: Harper&Row 1964Google Scholar
  31. Navas, F., Stark, L.: Sampling or intermittency in hand control system dynamics. Biophys. J. 8, 252–302 (1968)Google Scholar
  32. Polit, A., Bizzi, E.: Characteristics of motor programs underlying arm movements in monkeys. J. Neurophysiol. 42, 183–194 (1979)Google Scholar
  33. Prablanc, C., Jeannerod, M.: Continuous recording of hand position in the study of complex visuomotor tasks. Neuropsychologia 11, 123–125 (1973)Google Scholar
  34. Prablanc, C., Jeannerod, M.: Latence et précision des saccades en fonction de l'intensité, de la durée et de la position rétinienne d'un stimulus. Rev. E.E.G. Neurophysiol. 3, 484–488 (1974)Google Scholar
  35. Prablanc, C., Jeannerod, M.: Corrective saccades: dependence on retinal reafferent signals. Vision Res. 15, 465–469 (1975)Google Scholar
  36. Prablanc, C., Echallier, J.F., Massé, D.: Error correcting mechanisms in large saccades. Vision Res. 18, 557–560 (1978)Google Scholar
  37. Rabitt, P., Rodgers, B.: What does a man do after he makes an error? An analysis of response programming. Q. J. Psychol. 29, 727–743 (1977)Google Scholar
  38. Robinson, D.A.: Models of the saccadic eye movement control system. Kybernetik 14, 71–83, (1973)Google Scholar
  39. Sherrington, C.S.: Observations on the sensual role of the proprioceptive nerve supply of the extrinsic eye muscles. Proc. R. Soc. 64, 120–121 (1918)Google Scholar
  40. Skavenski, A.A.: Extraretinal correction and memory for target position. Vision Res. 11, 743–746 (1971)Google Scholar
  41. Skavenski, A.A.: Inflow as a source of extraretinal eye position information. Vision Res. 12, 221–229 (1972)Google Scholar
  42. Skolnick, A.: Stability and performance of manual control systems. IEEE Trans. Hum. Factors Electron. 7, 115–124 (1966)Google Scholar
  43. Sperry, R.W.: Effect of 180° rotation of the retinal field in visuomotor coordination. J. Exp. Zool. 92, 263–279 (1943)Google Scholar
  44. Stark, L., Iida, M., Willis, P.A.: Dynamic characteristics of the motor coordination system in man. Biophys. J. 1, 279–300 (1961)Google Scholar
  45. Taub, E., Goldgerg, I.A., Taub, P.: Deafferentation in monkeys pointing at a target without visual feedback. Exp. Neurol. 46, 178–186 (1975)Google Scholar
  46. Van Der Staak, C.: Intra and interhemispheric visual motor control of human arm movements. Neuropsychologia 13, 439–448 (1975)Google Scholar
  47. Vince, M.A.: The intermittency of control movements and psychological refractory period. Br. J. Psychol. 38, 149–157 (1948)Google Scholar
  48. von Holst, E., Mittelstaedt, H.: The principle of reafference. In: Perceptual processing pp. 41–47. Dodwell, P.C. (ed.). New York Appleton Century Croft 1971Google Scholar
  49. Welford, A.T.: The measurement of sensory motor performances: survey and reappraisal of twelve years progress. Ergonomics 3, 189–230 (1960)Google Scholar
  50. Wheeless, L., Jr., Boynton, R., Cohen, G.: Eye movement responses to step and pulse step stimuli. J. Opt. Soc. Am. 56, 956–960 (1966)Google Scholar
  51. Wiesendanger, M.: Programmation centrale et contrôle reflexe des mouvements. In: Du contrôle moteur à l'organisation du geste. Hecaen, H., Jeannerod, M. (eds.), pp. 73–83. Paris: Masson 1978Google Scholar
  52. White, C.T., Eason, C., Bartlett, N.R.: Latency and duration of eye movements in the horizontal plane. J. Opt. Soc. Am. 52, 210–213 (1962)Google Scholar
  53. Woodworth, R.S.: The accuracy of voluntary movement. Psychol. Rev. Monogr. Suppl. 3, 3 (1899)Google Scholar
  54. Young, L.R., Stark, L.: Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Trans. Hum. Factors Electron., H.F.E. 4, 38–51 (1963)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • C. Prablanc
    • 1
  • J. F. Echallier
    • 1
  • E. Komilis
    • 2
  • M. Jeannerod
    • 1
  1. 1.Laboratoire de Neuropsychologie Expérimentale, Unité 94 et Centre de Technologie BiomédicaleCEMI INSERMBronFrance
  2. 2.Derce Pierce CollegesAghia ParaskeviAttikiGreece

Personalised recommendations