Biological Cybernetics

, Volume 35, Issue 2, pp 101–112 | Cite as

Optomotor control of wing beat and body posture in drosophila

  • Karl Georg Götz
  • Bärbel Hengstenberg
  • Roland Biesinger
Article

Abstract

Continuous movement of striped patterns was presented on either side of a tethered fruitfly, Drosophila melanogaster, in order to simulate the displacement of stationary landmarks within the visual field of the freely moving fly. The horizontal components of the stimulus elicit, predominantly, yaw-torque responses during flight, or turning responses on the ground, which counteract involuntary deviations from a streight course in the corresponding mode of locomotion. The vertical components elicit, predominantly, covariant responses of lift and thrust which enable the fly to maintain a given level of flight. Monocular stimulation is sufficient to produce antagonistic responses, if the direction of the stimulus is reversed. The following constituents of the responses were derived mainly from properties of wing beat and body posture on photographs of fixed flight under visual stimulation. Wing stroke modulation (W. S. M.): The difference, and the sum, of the stroke amplitudes on either side are independently controlled by horizontal and vertical movement components, respectively. The maximum range of modulation per wing (12.3°) is equivalent to a 63% change in thrust on the corresponding side. Leg stroke modulation (L.S.M.): In the walking fly each pair of legs is under control of visual stimulation. The details of leg articulation are still unknown. Abdominal deflection (A.D.): An actively induced posture effect. Facilitates steering during free flight at increased air speed. Hind leg deflection (H.L.D.): Same as before. On most of the photographs the hind legs were deflected simultaneously and in the same direction as the abdomen. Hitch inhibition (H.I.): The term “hitch” denotes a transient reduction of stroke amplitude which seems to occur spontaneously and independently on either side of the fly. The hitch angle (12.2±3.8° S.D.) is most probably invariant to visual stimulation. Hitches are comparatively frequent in the absence of pattern movement. Their inhibition under visual stimulation is equivalent to an increase of the average thrust of the corresponding wing. The different constituents contribute to the optomotor responses according to the following tentative scheme (Fig. 7). The torque response is essentially due to the effects of W.S.M., A.D., H.L.D. and H.I., and the turning response to L.S.M. and possibly H.L.D., if the landmarks drift from anterior to posterior. So far, H.I. seems to be the only source of the torque response, and L.S.M. the only source of the turning response, if the landmarks drift in the opposite direction. The lift/thrust response results essentially from the effects of W.S.M. and H.I., no matter whether the landmarks drift from inferior to superior or in the opposite direction. The results obtained so far suggest that the optomotor control of course and altitude in Drosophila requires at least eight independent input channels or equivalent means for the separation of the descending signals from the visual centres. Further extension and refinement of the “wiring scheme” is required in order to improve the identification of the sensory inputs of the motor system and the classification of optomotor defective mutants.

References

  1. Bellesme, J. de: Sur une fonction de direction dans le vol des insects. Compt. Rend. Acad. Sci. 89b (1879)Google Scholar
  2. Blondeau, J.: Electrically evoked motor activity in the fly. Thesis, Eberhard-Karls-Universität Tübingen 1977Google Scholar
  3. Bishop, L.G., Keehn, D.G., McCann, G.D.: Motion detection by interneurons of the optic lobes and brain of the flies, Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31, 509–525 (1968)Google Scholar
  4. Boettiger, E.G., Furshpan, E.: The mechanics of flight movements in Diptera. Biol. Bull. 102, 200–211 (1952)Google Scholar
  5. Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics 24, 85–101 (1976)Google Scholar
  6. Buchner, E., Götz, K.G., Straub, C.: Elementary detectors for vertical movement in the visual system of Drosophila. Biol Cybernetics 31, 235–242 (1978)Google Scholar
  7. Camhi, J.M.: Yaw-correcting postural changes in locusts. J. Exp. Biol. 52, 519–531 (1970a)Google Scholar
  8. Camhi, J.M.: Sensory control of abdomen posture in flying locusts. J. Exp. Biol. 52, 533–537 (1970b)Google Scholar
  9. Collett, T.S., King, A.J.: Vision during flight. In: The compound eye and vision of insects. Horridge, G.A. (ed.), pp. 437–466. Oxford: Clarendon Press 1975Google Scholar
  10. Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. 99, 1–66 (1975)Google Scholar
  11. David, C.T.: The relationship between body angle and flight speed in free-flying Drosophila. Physiol. Entomol. 3, 191–195 (1978)Google Scholar
  12. DeVoe, R., Ockleford, E.M.: Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol. Cybernetics 23, 13–24 (1976)Google Scholar
  13. Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100, 5–23 (1975)Google Scholar
  14. Eckert, H.E.: Response properties of dipteran giant visual interneurons involved in control of optomotor behaviour. Nature 271, 358–360 (1978)Google Scholar
  15. Eckert, H.E., Bishop, L.G.: Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata. J. Comp. Physiol. 126, 57–86 (1978)Google Scholar
  16. Ewing, A.W.: The neuromuscular basis of courtship song in Drosophila: The role of the direct and axillary wing muscles. J. Comp. Physiol. 130, 87–93 (1979)Google Scholar
  17. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor optics. Snyder, A.W., Menzel, R. (eds.), pp. 98–125. Berlin, Heidelberg. New York: Springer 1975Google Scholar
  18. Geiger, G., Poggio, T.: On head and body movements of flying flies. Biol. Cybernetics 25, 177–180 (1977)Google Scholar
  19. Gewecke, M., Philippen, J.: Control of the horizontal flight-course by air-current sense organs in Locusta migratoria. Physiol. Entomol. 3, 43–52 (1978)Google Scholar
  20. Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968)Google Scholar
  21. Götz, K.G.: Movement discrimination in insects. In: Processing of optical data by organisms and by machines. Rendiconti S.I.F. XLIII, pp. 494–509. Reichardt, W.E. (ed.), London, New York: Academic Press 1969Google Scholar
  22. Götz, K.G.: Hirnforschung am Navigationssystem der Fliegen. Naturwissenschaften 62, 468–475 (1975a)Google Scholar
  23. Götz, K.G.: The optomotor equilibrium of the Drosophila navigation system. J. Comp. Physiol. 99, 187–210 (1975b)Google Scholar
  24. Götz, K.G., Buchner, E.: Evidence for one-way movement detection in the visual system of Drosophila. Biol. Cybernetics 31, 243–248 (1978)Google Scholar
  25. Götz, K.G., Wenking, H.: Visual control of locomotion in the walking fruitfly Drosophila. J. Comp. Physiol. 85, 235–266 (1973)Google Scholar
  26. Hausen, K.: Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der Schmeißfliege Calliphora erythrocephala. Thesis, Eberhard-Karls-Universität Tübingen, 1976aGoogle Scholar
  27. Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch., Teil C 31, 629–633 (1976b)Google Scholar
  28. Hausen, K.: Signal processing in the insect eye. In: Function and formation of neural systems. Stent, G.S. (ed.) pp. 81–110. Berlin, Danlem Konferenzen 1977Google Scholar
  29. Heide G.: Flugsteuerung durch nicht-fibrilläre Flugmuskeln bei der Schmeißfliege Calliphora. Z. Vgl. Physiol. 59, 456–460 (1968)Google Scholar
  30. Heide, G.: Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora. I. Lage, Insertionsstellen und Innervierungsmuster der Muskeln. Zool. Jahrb., Abt. Allg. Zool. Physiol. Tiere 76, 87–98 (1971a)Google Scholar
  31. Heide, G.: Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora. II. Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool. Jahrb., Abt. Allg. Zool. Physiol. Tiere 76, 99–137 (1971b)Google Scholar
  32. Heide, G.: Properties of a motor output system involved in the optomotor response in flies. Biol. Cybernetics 20, 99–112 (1975)Google Scholar
  33. Heide, G.: Proprioceptorische Beeinflussung der Impulsmusterbildung im neuromotorischen System fliegender Dipteren. Verh. Dtsch. Zool. Ges. 1978, 256Google Scholar
  34. Heisenberg, M.: Comparative behavioral studies on two visual mutants of Drosophila. J. Comp. Physiol. 80, 119–136 (1972)Google Scholar
  35. Heisenberg, M., Buchner, E.: The rôle of retinula cell types in visual behaviour of Drosophila melanogaster. J. Comp. Physiol. 117, 127–162 (1977)Google Scholar
  36. Heisenberg, M., Götz, K.G.: The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. Comp. Physiol. 98, 217–241 (1975)Google Scholar
  37. Heisenberg, M., Wolf, R.: On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. J. Comp. Physiol. 130, 113–130 (1979)Google Scholar
  38. Heisenberg, M., Wonneberger, R., Wolf, R.: Optomotor-blind H31—a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124, 287–296 (1978)Google Scholar
  39. Hengstenberg, R.: The effect of pattern movement on the impulse activity of the cervical connective of Drosophila melanogaster. Z. Naturforsch., Teil C 28, 593–596 (1973)Google Scholar
  40. Hengstenberg, R.: Spike response of “non-spiking” visual interneurone. Nature 270 338–340 (1977)Google Scholar
  41. McCann, G.D., Dill, J.C.: Fundamental properties of intensity, form, and motion perception in the visual nervous system of Calliphora phaenicia and Musca domestica. J. Gen. Physiol. 53, 385–413 (1969)Google Scholar
  42. McCann, G.D., Foster, S.F.: Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8, 193–203 (1971)Google Scholar
  43. Mimura, K.: Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 80, 409–437 (1972)Google Scholar
  44. Mulloney, B.: Interneurons in the central nervous system of flies and the start of flight. Z. Vgl. Physiol. 64, 243–253 (1969)Google Scholar
  45. Nachtigall, W., Wilson, D.: Neuro-muscular control of dipteran flight. J. Exp. Biol. 47, 77–97 (1967)Google Scholar
  46. Pfau, H.K.: Fliegt unsere Schmeißfliege mit Gangschaltung? Naturwissenschaften 60, 160–161 (1973)Google Scholar
  47. Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybernetics 23, 171–180 (1976)Google Scholar
  48. Pierantoni, R.: A look into the cock-pit of the fly. The architecture of the lobula plate. Cell Tissue Res. 171, 101–122 (1976)Google Scholar
  49. Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. II. Towards the underlying neural interactions. Q. Rev. Biophys. 9, 377–438 (1976)Google Scholar
  50. Pringle, J.W.S.: Insect flight. Cambridge: Cambridge Univ. Press 1957Google Scholar
  51. Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. I. A quantitative analysis. Q. Rev. Biophys. 9, 311–375 (1976)Google Scholar
  52. Schneider, P.: Vergleichende Untersuchungen zur Steuerung der Fluggeschwindigkeit bei Calliphora vicina. Z. Wiss. Zool. 173, 114–173 (1965)Google Scholar
  53. Smyth, T., Yurkiewicz, W.J.: Visual reflex control of indirect flight muscles in the sheep blowfly. Comp. Biochem. Physiol. 17, 1175–1180 (1966)Google Scholar
  54. Spüler, M., Heide, G.: Simultaneous recordings of torque, thrust and muscle spikes from the fly Musca domestica during optomotor responses. Z. Naturforsch., Teil C 33, 455–457 (1978)Google Scholar
  55. Srinivasan, M.V.: A visually-evoked roll response in the housefly. J. Comp. Physiol. 119, 1–14 (1977)Google Scholar
  56. Srinivasan, M.V., Bernard, G.D.: The pursuit response of the housefly and its interaction with the optomotor response. J. Comp Physiol. 115, 101–117 (1977)Google Scholar
  57. Stellwaag, F.: Wie steuern Insekten während des Fluges? Biol. Zentralbl. 36, 30–44 (1916)Google Scholar
  58. Strausfeld, N.J.: Atlas of an insect brain. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  59. Vogel, S.: Flight in Drosophila. I. Flight performance in tethered flies. J. Exp. Biol. 44, 567–578 (1966)Google Scholar
  60. Vogel, S.: Flight in Drosophila. II. Variations in stroke parameters and wing contour. J. Exp. Biol. 46 383–392 (1967)Google Scholar
  61. Voss, F.: Vergleichende Untersuchungen über die Flugwerkzeuge der Insekten, 2. Abhandlung. Verh. Dtsch. Zool. Ges. 24, 59–90 (1914)Google Scholar
  62. Wehrhahn, C., Reichardt, W.: Visually induced height orientation of the fly Musca domestica. Biol. Cybernetics 20, 37–50 (1975)Google Scholar
  63. Wehrhahn, C.: Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybernetics 29, 237–247 (1978a)Google Scholar
  64. Wehrhahn, C.: The angular orientation of the movement detectors acting on the flight lift response in flies. Biol. Cybernetics 31, 169–173 (1978b)Google Scholar
  65. Wyman, R.J.: A simple network for the study of neurogenetics. In: Simpler networks and behavior. Fentress, J.C. (ed.), pp. 153–166. Sunderland, Mass.: Sinauer 1976Google Scholar
  66. Zaagman, W.H., Mastebroek, H.A.K., Kuiper, J.W.: On the correlation model: Performance of a movement detecting neural element in the fly visual system. Biol. Cybernetics 31, 163–168 (1978)Google Scholar
  67. Zalokar: Anatomie du thorax de Drosophila melanogaster. Rev. Suisse Zool. 54, 17–53 (1947)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Karl Georg Götz
    • 1
  • Bärbel Hengstenberg
    • 1
  • Roland Biesinger
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFRG

Personalised recommendations