Advertisement

Biological Cybernetics

, Volume 38, Issue 3, pp 125–140 | Cite as

Anthropomorphic robotics

I. Representing mechanical complexity
  • M. Benati
  • S. Gaglio
  • P. Morasso
  • V. Tagliasco
  • R. Zaccaria
Article

Abstract

A study of the fundamental principles upon which manipulation dexterity is based cannot help mixing robotic and neurophysiological concepts. A preliminary step in this study consists of trying to understand the complexity of manipulation dynamics. Though complexity shows itself in the massive number of elements of kinematic and dynamic equations, the fundamental simplicity of the underlying mechanical laws suggests to look for a structure, particularly from the computational point of view. Accordingly, a working computational model is proposed that organizes the massive computational load into a structure which is composed of a small number of computational units and lends itself to parallel computation.

Keywords

Fundamental Principle Computational Model Dynamic Equation Parallel Computation Massive Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benati, M., Morasso, P., Tagliasco, V.: The inverse kinematic problem in manipulator control. Internal Report, E.E. Dept., Genova Univ. 1980Google Scholar
  2. Bisshop, K.E.: Rodrigues formula and the screw matrix. Trans. ASME, J. Eng. Ind. 91, 179–185 (1969)Google Scholar
  3. Brousse, P.: Cours de mecanique. Paris: Colin 1973Google Scholar
  4. Corben, H.C., Stehle, P.: Classical mechanics. New York: Wiley 1950Google Scholar
  5. De Kleer, J.: Qualitative and quantitative knowledge in classical mechanics (A.I. Laboratory, TR-352) Cambridge, MA: MIT Press 1975Google Scholar
  6. Dillon, S.R.: Automated equation generation and its application to problems in control. Proceed. 15th Joint Automatic Control Conf., Austin, Texas, 1974Google Scholar
  7. Flatau, C.R.: The future of generalized robotic manipulators. Proceed. N.S.F. Workshop on the Impact on the Accad. Commun. of Required Res. Activity for General Robotic Manip., Univ. of Florida 1978Google Scholar
  8. Hollerbach, J.M.: A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. AI Memo 533, MIT Artif. Intell. Labor, 1979Google Scholar
  9. Horn, B.K.P., Raibert, M.H.: Configuration space control. AI Memo 458, MIT Artif. Intell. Labor, 1977Google Scholar
  10. Luh, J., Walker, M., Paul, R.: Newton-Euler formulation of manipulator dynamics for computer control. 2nd IFAC/IFIP Symp. on Inform. Control Probl. in Manufact. Technol., Stuttgart 1979Google Scholar
  11. Lur'é, L.: Méchanique analytique Paris: Masson 1968Google Scholar
  12. Marr, D., Poggio, T.: From understanding computation to understanding neural circuitry. AI Memo 357, MIT Artif. Intell. Labor, 1976Google Scholar
  13. Nevins, J.L., Whitney, D.E.: The force vector assembly concept. (C.S. Draper Laboratory, Report E-2754) Cambridge, MA: MIT Press 1973Google Scholar
  14. Orin, D.E., Mc Ghee, R.B., Vukobratovich, M., Hartoch, G.: Kinematic and kinetic analysis of open chain linkages utilizing Newton-Euler methods. Math. Biosci. 43, 107–130 (1979)Google Scholar
  15. Paul, R.: Modelling, trajectory calculation, and servoing of a computer controlled arm. AI Memo 177, Stanford Artif. Intell. Labor, 1972Google Scholar
  16. Raibert, M.H.: A model for sensorimotor control and learning. Biol. Cybernetics 29, 29–36 (1978)Google Scholar
  17. Sturges, R.: Teleoperator arm design program (TOAD). (C.S. Draper Labor., Report 3-2746) Cambridge, MA: MIT Press (1973)Google Scholar
  18. Uicker, J.J.: On the dynamic analysis of spatial linkages using 4x4 matrices. Ph.D. Thesis, Northwestern Univ. 1965Google Scholar
  19. Van Trees, H.L.: Detection, estimation, and modulation theory. New York: Wiley & Sons 1968Google Scholar
  20. Vukobratovic, M.: Dynamics of active articulated mechanisms and synthesis of artificial motion. Mech. Mach. Theory 13, 1–56 (1978)Google Scholar
  21. Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. MMS-10, 47–53 (1969)Google Scholar
  22. Winston, P.H., Brown, R.H. (eds.): Artificial intelligence: an MIT perspective. Cambridge, MA: MIT Press 1979Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. Benati
    • 1
  • S. Gaglio
    • 2
  • P. Morasso
    • 2
  • V. Tagliasco
    • 2
  • R. Zaccaria
    • 2
  1. 1.Istituto di MatematicaUniversità di GenovaItaly
  2. 2.Istituto di ElettrotecnicaUniversità di GenovaItaly

Personalised recommendations