Biological Cybernetics

, Volume 50, Issue 2, pp 119–134 | Cite as

A hypothetical explanation of congenital nystagmus

  • Lance M. Optican
  • David S. Zee


Congenital nystagmus (CN) is a conjugate, rhythmic, eye movement disorder characterized by a wide variety of waveforms ranging from jerk to pendular types. No detailed mechanisms have been proposed to explain the generation of the CN wave-form This paper proposes a hypothetical mechanism for CN, and shows with computer simulations that a model based on this hypothesis can account for a variety of disparate waveforms. The basis of this model is a gaze-holding network, or neural integrator, that has both position and velocity feedback loops. The signals carried in these loops could arise from either afference or efference. In normal subjects, the position feedback would be positive and the velocity feedback would be negative. Both would help to increase the time constant of an imperfect neural integrator in the brain stem. We propose that in patients with CN the sign of the velocity pathway is reversed, making the neural integrator unstable. This instability could manifest as many different CN waveforms, depending on the direction and velocity of post-saccadic ocular drift and actions of nonlinearities within the position and velocity feedback loops. Thus a single underlying abnormality may be responsible for a variety of CN waveforms.


Computer Simulation Time Constant Feedback Loop Brain Stem Movement Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, L.A., Dell'Osso, L.F., Daroff, R.B.: Analog model for gazeevoked nystagmus. IEEE Trans. Biomed. Eng., BME-25, 71–75 (1978a)Google Scholar
  2. Abel, L.A., Schmidt, D., Dell'Osso, L.F., Daroff, R.B.: Saccadic system plasticity in humans. Ann. Neurol. 4, 313–318 (1978b)Google Scholar
  3. Baker, R., Precht, W., Llinás, R.: Mossy and climbing fiber connection of extraocular afferents to the cerebellum. Brain Res. 38, 440–445 (1972)Google Scholar
  4. Batini, C., Buisseret, P., Kado, R.T.: Extraocular proprioceptive and trigeminal projections to the Purkinje cells of the cerebellar cortex. Arch. Ital. Biol. 112, 1–17 (1974)Google Scholar
  5. Becker, W., Klein, H.M.: Accuracy of saccadic eye movements and maintenance of eccentric eye position in the dark. Vis. Res. 13, 1021–1034 (1973)Google Scholar
  6. Carpenter, R.H.S.: Cerebellectomy and the transfer function of the vestibulo-ocular reflex in the decerebrate cat. Proc. Roy. Soc. B 181, 353–374 (1972)Google Scholar
  7. Cogan, D.G.: Congenital nystagmus. Canad. J. Ophthal. 2, 4–10 (1967)Google Scholar
  8. Collewijn, H., Van der Mark, F., Jansen, T.C.: Precise recording of human eye movement. Vis. Res. 15, 447–450 (1975)Google Scholar
  9. Collewijn, H., Verhagen, A.M., Grootendorst, A.F.: Adaptation of the vestibulo-ocular reflex in albino rabbits by selective exposure of the anterior sector of the visual field. Brain Res. 192, 305–312 (1980)Google Scholar
  10. Creel, D., Witkop, C.J., King, R.A.: Asymmetric visually evoked potentials in human albinos: evidence for visual system anomalies. Invest. Ophthalmol. 13, 430–440 (1974)Google Scholar
  11. Creel, D., O'Donnell, F.E., Witkop, C.J.: Visual system anomalies in human ocular albinos. Science 201, 931–933 (1978)Google Scholar
  12. Creel, D., Garber, S.R., King, R.A., and Witkop, C.J.: Auditory brain stem anomalies in human albinos. Science 209, 1253–1255 (1980)Google Scholar
  13. Dell'Osso, L.F.: Fixation characteristics in hereditary congenital nystagmus. Am. J. Optom. Arch. Am. Acad. Optom. 50, 85–90 (1973)Google Scholar
  14. Dell'Osso, L.F.: Cngenital nystagmus — basic aspects. In: Functional basis of ocular motility disorders. Lennerstrand, G., Zee, D.S., Keller, E.L. (eds.), pp. 129–138. Oxford: Pergamon Press 1982Google Scholar
  15. Dell'Osso, L.F., Daroff, R.B.: Congenital nystagmus waveforms and foveation strategy. Doc. Ophthalmol. 39, 155–182 (1975)Google Scholar
  16. Dell'Osso, L.F., Daroff, R.B.: Braking saccade: a new fast eye movement. Aviat. Space Environ. Med. 47, 435–437 (1976)Google Scholar
  17. Dell'Osso, L.F., Daroff, R.B.: Clinical disorders of ocular movement. In: Models of oculomotor behavior and control. Zuber, B.L. (ed). pp. 233–256. Florida: CRC Press 1981Google Scholar
  18. Dell'Osso, L.F., Flynn, J.T., Daroff, R.B.: Hereditary congenital nystagmus. Arch. Ophthalmol. 92, 366–374 (1974)Google Scholar
  19. Dell'Osso, L., Gauthier, G., Liberman, G., Stark, L.: Eye movement recordings as a diagnostic tool in a case of congenital nystagmus. Am. J. Optom. Arch. Am. Acad. Optom. 49, 3–13 (1972)Google Scholar
  20. Fiorentini, A., Maffei, L.: Instability of the eye in the dark and proprioception. Nature (Lond) 269, 330–331 (1977)Google Scholar
  21. Forssman, B.: A study of congenital nystagmus. Acta. Otolaryngol. 57, 427–449 (1964)Google Scholar
  22. Fuchs, A.F., Kornhuber, H.H.: Extraocular muscle afferents to the cerebellum of the cat. J. Physiol. (London) 200, 713–722 (1969)Google Scholar
  23. Halmagyi, G.M., Gresty, M.A., Leech, J.: Reversed optokinetic nystagmus (OKN): mechanism and clinical significance. Ann. Neurol. 7, 429–435 (1980)Google Scholar
  24. Kamath, R.Y., Keller, E.L.: A neurological integrator for the oculomotor control system. Math. Biosci. 30, 341–352 (1976)Google Scholar
  25. Kimura, M., Maekawa, K.: Activity of flocculus Purkinje cells during passive eye movements. J. Neurophysiol. 46, 1004–1017 (1981)Google Scholar
  26. Kommerell, G., Mehdorn, E.: Is an optokinetic defect the cause of congenital and latent nystagmus? In: Functional basis of ocular motility disorders. Lennerstrand, G., Zee, D.S., Keller, E.L. (eds.). pp. 159–167, Oxford: Pergamon Press 1982Google Scholar
  27. Kommerell, G., Olivier, D., Theopold, H.: Adaptive programming of phasic and tonic components in saccadic eye movements. Investigations in patients with abducens palsy. Invest. Ophthalmol. 15, 657–660 (1976)Google Scholar
  28. Kornhuber, H.H.: Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik 8, 157–162 (1971)Google Scholar
  29. LeLiever, W.C., Barber, H.O.: Observations on optokinetic nystagmus in patients with congenital nystagmus. Otolaryngol. Head Neck Surg. 89, 110–116 (1981)Google Scholar
  30. Lisberger, S.G., Fuchs, A.F.: Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysiol. 41, 733–763 (1978)Google Scholar
  31. Maekawa, K., Kimura, M.: Mossy fiber projections to the cerebellar flocculus from the extraocular muscle afferents. Brain Res. 191, 313–325 (1980)Google Scholar
  32. Meienberg, O., Hemphill, G., Rosenberg, M., Hoyt, W.F.: Visually evoked response asymmetries in a family with congenital nystagmus. Arch. Neurol. 37, 697–698 (1980)Google Scholar
  33. Miles, F.A., Fuller, J.H., Braitman, D.J., Dow, B.M.: Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J. Neurophysiol. 43, 1437–1476 (1980)Google Scholar
  34. Noda, H., Suzuki, D.A.: The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. J. Physiol. (London) 294, 335–348 (1979)Google Scholar
  35. Optican, L.M.: Adaptive properties of the saccadic system. In: Adaptive mechanisms in visual-vestibular interaction. Berthoz, A., Melvill Jones, G. (ededs.). Elsevier Press (in press 1984)Google Scholar
  36. Optican, L.M., Robinson, D.A.: Cerebellar-dependent adaptive control of primate saccadic system. J. Neurophysiol. 44, 1058–1075 (1980)Google Scholar
  37. Optican, L.M., Zee, D.S., Chu, F.C., Cogan, D.G.: Open loop pursuit in congenital nystagmus. Suppl. Invest. Ophthalmol. Vis. Sci. 24, 271 (1983)Google Scholar
  38. Robinson, D.A.: A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. BME-26, 137–145 (1963)Google Scholar
  39. Robinson, D.A.: Models of the saccadic eye movement control system. Kybernetik 14, 71–83 (1973)Google Scholar
  40. Robinson, D.A.: The effect of cerebellectomy on the cat's vestibulo-ocular integrator. Brain Res. 71, 195–207 (1974)Google Scholar
  41. Schwarz, D.W.F., Tomlinson, R.D.: Neuronal responses to eye muscle stretch in cerebellar lobular VI of the cat. Exp. Brain Res. 27, 101–111 (1977)Google Scholar
  42. Yee, R.D., Wong, E.K., Baloh, R.W., Honrubia, V.: A study of congenital nystagmus: waveforms. Neurol. 26, 326–333 (1976)Google Scholar
  43. Zee, D.S., Friendlich, A.R., Robinson, D.A.: The mechanism of downbeat nystagmus. Arch. Neurol. 30, 227–237 (1974)Google Scholar
  44. Zee, D.S., Leigh, R.J., Mathieu-Millaire, F.: Cerebellar control of ocular gaze stability. Ann. Neurol. 7, 37–40 (1980)Google Scholar
  45. Zee, D.S., Optican, L.M., Cook, J.D., Robinson, D.A., Engel, W.K.: Slow saccades in spinocerebellar degeneration. Arch. Neurol. 33, 243–251 (1976)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Lance M. Optican
    • 1
  • David S. Zee
    • 2
    • 3
    • 4
  1. 1.Laboratory of Sensorimotor Research, National Eye InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Clinical Branch, Neuro-ophthalmology, National Eye InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Department of Neurology, OphthalmologyJohns Hopkins School of MedicineBaltimoreUSA
  4. 4.Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations