Biological Cybernetics

, Volume 36, Issue 1, pp 19–31 | Cite as

On associative memory



The information storing capacity of certain associative and auto-associative memories is calculated. For example, in a 100×100 matrix of 1 bit storage elements more than 6,500 bits can be stored associatively, and more than 688,000 bits in a 1,000×1,000 matrix. Asymptotically, the storage capacity of an associative memory increases proportionally to the number of storage elements. The usefulness of associative memories, as opposed to conventional listing memories, is discussed — especially in connection with brain modelling.


Storage Capacity Associative Memory Storage Element Brain Modelling Listing Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.A.: Kybernetik 5, 113 (1968)Google Scholar
  2. Anderson, J.A.: Math. Biosci. 14, 197 (1972)Google Scholar
  3. Ashby, W.R.: Design for a brain. New York: Wiley 1952Google Scholar
  4. Braitenberg, V.: Physics and mathematics of the nervous system. Conrad, M., Güttinger, W., Dal Cin, M. (eds.), p. 290 Berlin, Heidelberg, New York: Springer 1974Google Scholar
  5. Braitenberg, V.: On the texture of brains. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  6. Braitenberg, V.: Thebretical approaches to complex systems. Heim, R., Palm, G. (eds.) p. 171. Berlin, Heidelber, New York: Springer 1978Google Scholar
  7. Cajal, S.R.: Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloin 1911Google Scholar
  8. Gabor, D.: IBM. J. Res. Dev. 13, 156 (1969)Google Scholar
  9. Hebb, D.O.: The organization of behaviour New York: Wiley 1949Google Scholar
  10. van Heerden, P.J.: (and also Willshaw, D.J., Longuet-Higgins, H.C. and Buneman, O.P.) Nature 225, 177 and 178 (1970)Google Scholar
  11. Longuet-Higgins, H.C., Willshaw, D.J., Buneman, O.P.: Rev. Biophys. 3, 223 (1970)Google Scholar
  12. Kohonen, T.: IEEE Trans. Comp. C 21, 353 (1972)Google Scholar
  13. Kohonen, T., IEEE Trans. Comp. C 23 444 (1974)Google Scholar
  14. Kohonen, T., Oja, E.: Biol. Cybernetics 21, 85 (1976)Google Scholar
  15. Kohonen, T.: Associative memory. Berlin, Heidelber, New York: Springer 1977Google Scholar
  16. v. d. Malsburg, C.: Kybernetik 14, 85 (1973)Google Scholar
  17. Marr, D.: J. Physiol. (London) 202, 437 (1969)Google Scholar
  18. Marr, D.: Philos. Trans. R. Soc. London Ser. B 176, 161 (1970)Google Scholar
  19. Marr, D.: Philos. Trans. R. Soc. London Ser. B 262, 23 (1971)Google Scholar
  20. Nass, M.M., Cooper, L.N.: Biol. Cybernetics 19, 1 (1975)Google Scholar
  21. Palm, G.: Biol. Cybernetics 31, 119 (1978)Google Scholar
  22. Pfaffelhuber, E.: J. Theor. Biol. 40, 63 (1973)Google Scholar
  23. Pfaffelhuber, E.: Biol. Cybernetics 18, 217 (1975)Google Scholar
  24. Poggio, T.: Biol. Cybernetics 19, 201 (1975)Google Scholar
  25. Rosenblatt, F.: Principles of neurodynamics, New York: Spartan Books 1962Google Scholar
  26. Samuel, A.L.: IBM.J. Res. Dev. 3, 210 (1959)Google Scholar
  27. Samuel, A.L.: IBM. J. Res. Dev. 11, 601 (1967)Google Scholar
  28. Steinbuch, K.: Kybernetik 1, 36 (1961)Google Scholar
  29. Uttley, A.M.: Automata studies. Shannon, C.E., McCarthy, J. (eds.), pp. 252 and 237, Princeton: Princeton University Press 1956Google Scholar
  30. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Nature 222, 960 (1969)Google Scholar
  31. Willshaw, D.J.: Models of distributed associative memory. Thesis, University of Edinburgh 1971Google Scholar
  32. Willwacher, G.: Biol. Cybernetics 24, 181 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. Palm
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFRG

Personalised recommendations