Biological Cybernetics

, Volume 50, Issue 5, pp 363–370 | Cite as

The structure of images

  • Jan J. Koenderink


In practice the relevant details of images exist only over a restricted range of scale. Hence it is important to study the dependence of image structure on the level of resolution. It seems clear enough that visual perception treats images on several levels of resolution simultaneously and that this fact must be important for the study of perception. However, no applicable mathematically formulated theory to deal with such problems appers to exist. In this paper it is shown that any image can be embedded in a one-parameter family of derived images (with resolution as the parameter) in essentially only one unique way if the constraint that no spurious detail should be generated when the resolution is diminished, is applied. The structure of this family is governed by the well known diffusion equation (a parabolic, linear, partial differential equation of the second order). As such the structure fits into existing theories that treat the front end of the visual system as a continuous tack of homogeneous layer, characterized by iterated local processing schemes. When resolution is decreased the images becomes less articulated because the extrem (“light and dark blobs”) disappear one after the other. This erosion of structure is a simple process that is similar in every case. As a result any image can be described as a juxtaposed and nested set of light and dark blobs, wherein each blod has a limited range of resolution in which it manifests itself. The structure of the family of derived images permits a derivation of the sampling density required to sample the image at multiple scales of resolution. The natural scale along the resolution axis (leading to an informationally uniform sampling density) is logarithmic, thus the structure is apt for the description of size invariances.


Diffusion Equation Visual Perception Multiple Scale Processing Scheme Sampling Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burt, P.J., Hong, Tsai-Hong, Rosenfeld, A.: Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Trans. SMC-11, 802–825 (1981)Google Scholar
  2. Cayley, A.: On contour and slope lines. The London, Edinburgh, and Dublin Philosophical Magazine and J. of Science 18 (120), 264–268 (Oct. 1859)Google Scholar
  3. Maxwell, J.C.: On hills and dales. The London, Edinburgh, and Dublin Philosophical Magazine and J. of Science 4th Series 40 (269), 421–425 (Dec. 1870)Google Scholar
  4. Ehrich, R.W., Foith, J.P.: Representation of random waveforms by relational trees. IEEE Trans. Comput. 25, 725–736 (1976)Google Scholar
  5. Guillemin, V., Pollack, A.: Differential topology. Englewood Cliffs, NJ: Prentice-Hall 1974Google Scholar
  6. Hay, G.A., Chesters, M.S.: A model of visual threshold detection. J. Theor. Biol. 67, 221–240 (1977)CrossRefPubMedGoogle Scholar
  7. Koenderink, J.J., Doorn, A.J. van: The structure of two-dimensional scalar fields with applications to vision. Biol. Cybern. 33, 151–158 (1979)CrossRefPubMedGoogle Scholar
  8. Koenderink, J.J., Doorn, A.J. van: Visual detection of spatial contrast: influence of location in the visual field, target extent and illuminance level. Biol. Cybern. 30, 157–167 (1978)CrossRefPubMedGoogle Scholar
  9. Koenderink, J.J., Doorn, A.J. van: Invariant features of contrast detection: an explanation in terms of self-similar detector arrays. J. Opt. Soc. Am. 72, 83–87 (1982)PubMedGoogle Scholar
  10. Marko, H.: Die Systemtheorie homogener Schichten. Kybernetik 5, 221 (1969)Google Scholar
  11. Marr, D., Poggio, T., Ullman, S.: Bandpass channels, zero-crossings, and early visual information processing. J. Opt. Soc. Am. 69, 914–916 (1977)Google Scholar
  12. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal Soc. Lond. B 207, 187–217 (1980)Google Scholar
  13. Roehler, R.: Ein Modell zur örtlich-zeitlichen Signalübertragung im visuellen System des Menschen auf der Basis der linearen Systemtheorie kontinuierlichen Medien. Biol. Cybern. 27, 97–105 (1976)CrossRefGoogle Scholar
  14. Spivak, M.: A comprehensive introduction to differential geometry, Vol. III. Berkeley, CA: Publish or Perish Inc. 1975Google Scholar
  15. Thom, R.: Stabilité structurelle et morphogenésè. Reading, MA: Benjamin 1972Google Scholar
  16. Witkin, A.P.: Scale-space filtering. Proc. of IJCAI, 1019-1021, Karlsruhe 1983Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Jan J. Koenderink
    • 1
    • 2
  1. 1.Department of Medical and Physiological Physics, Physics LaboratoryState University UtrechtThe Netherlands
  2. 2.Rijksuniversiteit UtrechtUtrechtFysisch LaboratoriumThe Netherlands

Personalised recommendations