Current Genetics

, Volume 21, Issue 3, pp 241–247 | Cite as

Regulation of mitochondrial transcription during the stringent response in yeast

  • Robin Cantwell
  • Catherine M. McEntee
  • Alan P. Hudson
Original Articles

Summary

In yeast (S. cerevisiae) the stringent response is known to include rapid, selective, and severe transcriptional curtailment for genes specifying cytoplasmic rRNAs and r-proteins. We have shown that transcription of the mitochondrial 21S rRNA gene is also congruently and selectively curtailed during the yeast stringent response. Using an in vitro transcription assay with intact organelles from both ϱ+ and ϱ strains, we show here that the mitochondrial stringent response includes not only transcription of the 21S and 16S rRNA genes, but also that of organellar genes specifying non-mitoribosome-related products. Stringent organellar transcriptional curtailment is identical when cells are starved for a required (marker) amino acid or when they are subjected to nutritional downshift, and the relative level of that transcriptional curtailment following either perturbation is the same in cells growing on fermentative (repressing) or purely respiratory carbon sources. These results confirm that the mechanism governing mitochondrial gene expression during a stringent response is specified outside the organelle, and they show that this transcriptional control mechanism is not immediately subject to glucose repression. In all strains examined, stringent organellar gene expression requires a mitochondrial promoter, suggesting that the regulatory mechanism which functions during the stringent response operates primarily at transcriptional initiation.

Key words

Yeast Transcription Mitochondria RNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birky CW (1975) Gene 80:695–709Google Scholar
  2. Biswas T, Getz G (1986a) J Biol Chem 261:3927–3930Google Scholar
  3. Biswas T, Getz G (1986b) Proc Natl Acad Sci USA 83:270–274Google Scholar
  4. Biswas T, Edwards JC, Rabinowitz M, Getz G (1985) Biochemistry 82:1954–1958Google Scholar
  5. Bradford M (1976) Anal Biochem 72:248–254Google Scholar
  6. Chandrasekaran K, Jayarman J (1978) FEBS Lett 87:52–54Google Scholar
  7. Christianson T, Rabinowitz M (1983) J Biol Chem 258:14025–14033Google Scholar
  8. Donovan DM, Pearson NJ (1986) Mol Cell Biol 6:2429–2435Google Scholar
  9. Dennis PP (1977) J Bacteriol 129:580–588Google Scholar
  10. Edwards JC, Levens D, Rabinowitz M (1982) Cell 31:337–346Google Scholar
  11. Elion EA, Warner JR (1986) Mol Cell Biol 6:2089–2097Google Scholar
  12. Fang M, Butow RA (1970) Biochem Biophys Res Commun 41:1579–1583Google Scholar
  13. Gallant JA (1979) Annu Rev Genet 13:393–415Google Scholar
  14. Gibbs JB, Marshall MS (1989) Microbiol Rev 53:171–185Google Scholar
  15. Greenleaf AL, Kelly JL, Lehman IR (1986) Proc Natl Acad Sci USA 83:3391–3394Google Scholar
  16. Groot GFP, van Harten-Loosbroeck N, van Ommen G-JB, Pijst HLA (1980) Nucleic Acids Res 9:6369–6377Google Scholar
  17. Hahn S, Guarente L (1988) Science 240:317–321Google Scholar
  18. Hudspeth MES, Shumard DS, Tatti KM, Grossman L (1980) Biochem Biophys Acta 610:221–228Google Scholar
  19. Kelly JL, Greenleaf AL, Lehman IR (1987) J Biol Chem 261:10348–10351Google Scholar
  20. Kim CH, Warner JR (1983) Mol Cell Biol 3:457–465Google Scholar
  21. Lamb MR, Anziano PQ, Glaus KR, Hanson DK, Klapper HJ, Perlman PS, Mahler HR (1983) J Biol Chem 258:1991–1999Google Scholar
  22. Lisowsky T (1990) Mol Gen Genet 220:186–190Google Scholar
  23. Lisowsky T, Michealis G (1989) Mol Gen Genet 219:125–128Google Scholar
  24. Locker J, Rabinowitz M (1981) Plasmid 6:302–314Google Scholar
  25. Masters BS, Stohl LL, Clayton DA (1987) Cell 51:89–99Google Scholar
  26. McEntee CM, Hudson AP (1989) Anal Biochem 176:303–306Google Scholar
  27. McEntee CM, Cantwell R, Thomas LC, Hudson AP (1989) Biochem Biophys Res Commun 164:362–369Google Scholar
  28. Mueller DM, Getz G (1986a) J Biol Chem 261:11756–11765Google Scholar
  29. Mueller DM, Getz G (1986b) J Biol Chem 261:11816–11822Google Scholar
  30. Oliver SG, McLaughlin CS (1977) Mol Gen Genet 154:145–153Google Scholar
  31. Pao CC, Paietta J, Gallant JA (1977) Biochem Biophys Res Commun 74:314–322Google Scholar
  32. Ray DB, Butow RA (1979a) Mol Gen Genet 173:227–238Google Scholar
  33. Ray DB, Butow RA (1979b) Mol Gen Genet 173:239–247Google Scholar
  34. Richter D, (1973) FEBS Lett 34:291–294Google Scholar
  35. Schinkel AH, Groot Koerkamp MJA, Van der Horst GTL, Touw EPW, Osinga KA, Van der Bliek AM, Veeneman GH, Van Boom JH, Tabak HF (1986) EMBO J 5:1041–1047Google Scholar
  36. Schinkel AH, Groot Koerkamp MJA, Touw EPW, Tabak HF (1987) J Biol Chem 262:12785–12791Google Scholar
  37. Shulman RW, Sripati CE, Warner JR (1977) J Biol Chem 252:1344–1349Google Scholar
  38. Sor F, Fukuhara H (1983) Nucleic Acids Res 11:339–348Google Scholar
  39. Warner JR, Gorenstein C (1978) Nature 275:338–339Google Scholar
  40. Wettstein-Edwards J, Ticho BS, Martin NC, Najarian D, Getz G (1986) J Biol Chem 261:2905–2911Google Scholar
  41. Winkley CS, Keller MJ, Jaehning JA (1985) J Biol Chem 260:14214–14223Google Scholar
  42. Zassenhaus HP, Martin NC, Butow RA (1984) J Biol Chem 259:6019–6027Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Robin Cantwell
    • 1
  • Catherine M. McEntee
    • 2
  • Alan P. Hudson
    • 1
    • 2
  1. 1.Research Service, Department Veterans Affairs Medical CenterUniversity and Woodland EvenuesPhiladelphiaUSA
  2. 2.Department of Microbiology and ImmunologyThe Medical College of PennsylvaniaPhiladelphiaUSA

Personalised recommendations