Advertisement

Current Genetics

, Volume 24, Issue 4, pp 307–312 | Cite as

Molecular cloning of the PEL1 gene of Saccharomyces cerevisiae that is essential for the viability of petite mutants

  • Martin Janitor
  • Július Šubík
Original Articles

Abstract

The PEL1 gene of Saccharomyces cerevisiae is essential for the cell viability of mitochondrial petite mutants, for the ability to utilize glycerol and ethanol on synthetic medium, and for cell growth at higher temperatures. By tetrad analysis the gene was assigned to chromosome III, centromere proximal of LEU2. The PEL1 gene has been isolated and cloned by the complementation of a pel1 mutation. The molecular analysis of the chromosomal insert carrying PEL1 revealed that this gene corresponds to the YCL4W open reading frame on the complete DNA sequence of chromosome III. The putative Pel1 protein is characterized by a low molecular weight of approximately 17 kDa, a low codon adaptation index, and a high leucine content.

Key words

Growth control Genetic mapping Molecular cloning Nucleo-mitochondrial interaction Saccharomyces cerevisiae Viability of petites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciriacy M (1976) Mol Gen Genet 145:327–333Google Scholar
  2. Dieckman CD, Tzagoloff A (1983) Methods Enzymol 97:355–360Google Scholar
  3. Gbelská Y, Šubík J, Svoboda G, Goffeau A, Kováč L (1983) Eur J Biochem 130:281–286Google Scholar
  4. Gonzales GA, Montminty MR (1989) Cell 59:675–680Google Scholar
  5. Hwang ST, Schatz G (1989) Proc Natl Acad Sci USA 76:4365–4369Google Scholar
  6. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  7. Janitor M, Šubík J, Schweyen RJ (1992) Yeast 8:S443Google Scholar
  8. Kolarov J, Šubík J, Kováč L (1972) Biochim Biophys Acta 267:465–478Google Scholar
  9. Kolarov J, Kolarová N, Nelson N (1990) J Biol Chem 265:12711–12716Google Scholar
  10. Kováč L, Kolarov J, Šubík J (1977) Mol Cell Biochem 14:11–14Google Scholar
  11. Kováčová V, Irmlerová J, Kováč L (1968) Biochim Biophys Acta 162:157–163Google Scholar
  12. Mandel M, Higa A (1970) J Mol Biol 53:159–162Google Scholar
  13. Mayer BJ, Hamaguchi M, Hanafusa H (1988) Nature 332:272–275Google Scholar
  14. Nasmyth KA, Reed SI (1980) Proc Natl Acad Sci USA 77:2119–2121Google Scholar
  15. Nehlin JO, Carlberg M, Ronne H (1992) Nucleic Acids Res 20:5271–5278Google Scholar
  16. Oliver JG et al. (1992) Nature 357:38–46Google Scholar
  17. Pon L, Schatz G (1991) In: Strathern JN, Jones EW, Broach JR, eds, The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 333–406Google Scholar
  18. Pringle JR (1975) Methods Cell Biol 12:233–272Google Scholar
  19. Rogers S, Wells R, Rechsteiner M (1986) Science 234:364–368Google Scholar
  20. Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) Gene 60:237–243Google Scholar
  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  22. Sharp PM, Li WH (1987) Nucleic Acids Res 15:1281–1295Google Scholar
  23. Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  24. Slonimski PP, Perrodin G, Croft JH (1968) Biochem Biophys Res Commun 30:232–239Google Scholar
  25. Šubík J (1974) FEBS Lett 42:309–313Google Scholar
  26. Šubík J, Kolarov J, Kováč L (1972) Biochem Biophys Res Commun 49:192–198Google Scholar
  27. Šubík J, Kováčová V, Takácsová G (1977) Eur J Biochem 73:275–286Google Scholar
  28. Wills C, Phelps J (1975) Arch Biochem Biophys 167:627–637Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Martin Janitor
    • 1
  • Július Šubík
    • 1
  1. 1.Department of Microbiology and VirologyComenius UniversityBratislavaSlovak Republic

Personalised recommendations