Current Genetics

, Volume 23, Issue 1, pp 1–8

In-vitro recombination in rad and rnc mutants of Saccharomyces cerevisiae

  • Peter D. Moore
  • John R. Simon
  • Linda J. Wallace
  • Terry Y. -K. Chow
Original Articles

Summary

Extracts of S. cerevisiae cells can catalyze homologous recombination between plasmids in vitro. Extracts prepared from rad50, rad52 or rad54 disruption mutants all have reduced recombinational activity compared to wild-type. The rad52 and rad54 extracts are more impaired in the recombination of plasmids containing double-strand breaks than of intact plasmids, whereas rad50 extracts are deficient equally for both types of substrate. The nuclease RhoNuc (previously designated yNucR), encoded by the RNC1 (previously designated NUC2) gene and regulated by the RAD52 gene, is not required for recombination when one substrate is single-stranded but is essential for the majority of recombination events when both substrates are double-stranded. Furthermore, elimination of this nuclease restores recombination in rad52 extracts to levels comparable to those in wild-type extracts.

Key words

Recombination Yeast radmutants Endo/exonuclease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayares D, Spencer J, Schwartz F, Morse B, Kucherlapati RS (1985) Genetics 111:375–388Google Scholar
  2. Chow TY-K, Fraser MJ (1979) Can J Biochem 57:889–901Google Scholar
  3. Chow TY-K, Fraser MJ (1983) J Biol Chem 258:12010–12018Google Scholar
  4. Chow TY-K, Kunz BA (1991) Curr Genet 20:39–44Google Scholar
  5. Chow TY-K, Resnick MA (1987) J Biol Chem 262:17659–17667Google Scholar
  6. Chow TY-K, Resnick MA (1988) Mol Gen Genet 211:41–48Google Scholar
  7. Dykstra CC, Nitiss J, Resnick MA, Sugino A (1988) In: Friedberg E, Hanawalt P (eds) Mechanisms and consequences of DNA damage processing. UCLA Symposia on Molecular Biology, New Series, vol 83. Alan R. Liss, Inc., New York, pp 231–235Google Scholar
  8. Fraser MJ, Koa W, Chow TY-K (1990) J Bacteriol 172:507–510Google Scholar
  9. Game J (1983) In Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics, fundamental and applied aspects. Springer-Verlag, New York, pp 109–137Google Scholar
  10. Gietz RD, Sugino A (1988) Gene 74:527–534Google Scholar
  11. Glaser VM, Glasunov AV, Tevzadze GG, Perera JR, Shestakov SV (1990) Curr Genet 18:1–5Google Scholar
  12. Kolodner R, Evans DH, Morrison PT (1987) Proc Natl Acad Sci USA 84:5560–5564Google Scholar
  13. Kucherlapati RS, Eves EM, Song K-Y, Morse BS, Smithies O (1984) Proc Natl Acad Sci USA 81:3153–3157Google Scholar
  14. Kucherlapati RS, Moore PD (1988). In: Kucherlapati RS, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington, pp 575–595Google Scholar
  15. Kucherlapati RS, Spencer J, Moore PD (1985) Mol Cell Biol 5:714–720Google Scholar
  16. Landis JR Stanish WM, Freeman JL, Koch GG (1976) A computer program for the generalized chi-squared analysis of categorial data using weighted least sequares. Comp Prog Biomed 6:196–231Google Scholar
  17. Malone RE (1983) Mol Gen Genet 189:409–315Google Scholar
  18. Malone RE, Monteleone BA, Edwards C, Carney K, Hoekstra MF (1988) Curr Genet 14:211–223Google Scholar
  19. Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  20. Moore PD, Song K-Y, Chekuri L, Wallace L, Kucherlapati RS (1986) Mutat Res 160:149–155Google Scholar
  21. Orr-Weaver T, Szostak J, Rothstein R (1981) Proc Natl Acad Sci USA 78:6354–6358Google Scholar
  22. Rauth S, Song K-Y, Ayares D, Wallace L, Moore PD, Kucherlapati RS (1986) Proc Natl Acad Sci USA 83:5587–5591Google Scholar
  23. Resnick MA, Chow TY-K, Nitiss J, Game J (1984) Cold Spring Harbor Symp Quant Biol 49:639–469Google Scholar
  24. Simon JR, Moore PD (1990) Mol Gen Genet 223:241–248Google Scholar
  25. Smith GR (1989) Cell 58:807–809Google Scholar
  26. Song K-Y, Chekuri L, Rauth S, Ehrlich S, Kucherlapati RS (1985) Mol Cell Biol 5:3331–3336Google Scholar
  27. Southern PJ, Berg P (1982) J Mol Appl Genet 1:327–341Google Scholar
  28. Sugino A, Nitiss J, Resnick MA (1988) Proc Natl Acad Sci USA 85:3683–3687Google Scholar
  29. Symington LS (1991) EMBO J 10:987–996Google Scholar
  30. Symington LS, Fogarty LM, Kolodner R (1983) Cell 35:804–813Google Scholar
  31. Symington LS, Morrison P, Kolodner R (1984) Cold Spring Harbor Symp Quant Biol 49:804–814Google Scholar
  32. Symington LS, Morrison P, Kolodner R (1985) Mol Cell Biol 5:2361–2368Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Peter D. Moore
    • 1
  • John R. Simon
    • 1
  • Linda J. Wallace
    • 1
  • Terry Y. -K. Chow
    • 2
  1. 1.Department of Microbiology and ImmunologyUniversity of Illinois College of Medicine at ChicagoChicagoUSA
  2. 2.Department of Nuclear Medicine and Radiobiology, Faculty of MedicineUniversity of SherbrookeSherbrookeCanada
  3. 3.Department of GeneticsUniversity of Illinois, College of MedicineChicagoUSA
  4. 4.Department of Biological ChemistryUCLA School of MedicineLos AngelesUSA

Personalised recommendations