Advertisement

The optic neuropiles and chiasmata of Crustacea

  • Rolf Elofsson
  • Erik Dahl
Article

Summary

On the basis of ontogeny and adult morphology, an interpretation of the arrangement of optic neuropiles and fibre connexions of the Crustacean compound eye is presented. In the embryo of phyllopods and decapods, the ommatidia, the lamina ganglionaris, and the medulla externa are developed synchronously from a common medial proliferation zone. As this zone persists in all investigated adult Crustacea that possess compound eyes, such a derivation of the mentioned structures is taken to be universal within the group. The direction of growth of the lamina ganglionaris is parallel with the row of ommatidia, the growth direction of the medulla externa is perpendicular to it and parallel with the long axis of the eyestalk. This arrangement is more or less retained in most adult non-Malacostracan Crustacea, and the axons of fully developed neurons pierce the optic neuropiles and leave and enter on the neuropile side. As a result, there is no chiasma in the non-Malacostracan groups.

The Malacostraca have an extra neuropile, the medulla interna, derived from the medulla terminalis. Chiasmata occur between the lamina ganglionaris and the medulla externa, and between the medulla externa and the medulla interna. This difference from the non-Malacostracans depends on the course of the fibres. Those coming from the lamina ganglionaris leave the lamina on the neuropile side and enter medulla externa between the cell bodies in the perikaryon layer of the medulla externa neurons and the neuropile of the medulla. The fibres from the medulla externa to the lamina come from T-shaped neurons and emanate from the perikaryon layer side, entering the lamina on its neuropile side. The fibre relations between the medulla externa and the medulla interna are similar. Thus in both cases, chiasmata are present from the beginning, but they become obvious when the medulla externa rotates through part of a circle.

The directed growth of the optic neuropiles and the course of the fibre connexions are consequently crucial to the understanding of the topographic relations between the neuropiles. A pattern with short neurons connecting neighbouring optic neuropiles and long neurons connecting the medulla externa with the central nervous system is common to all crustaceans.

Key-Words

Compound Eyes Crustacea Optic Neuropiles Chiasmata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balss, H.: Decapoda. In: Bronn's Klassen 5, I, 7 Buch, 3 Liefg., S. 386–418 Akademische Verlagsgesellschaft: Leipzig 1944.Google Scholar
  2. Bullock, T. H., Horridge, G. A.: Structure and function in the nervous system of invertebrates. II. San Fransisco and London: W. H. Freeman & Co. 1965.Google Scholar
  3. Claus, C.: Organismus der Nebaliden und die systematische Stellung der Leptostraken. Arb. zool. Inst. Univ. Wien 8, 1–148 (1889).Google Scholar
  4. Dahl, E.: The ontogeny and comparative anatomy of some protocerebral sense organs in notostracan phyllopods. Quart. J. micr. Sci. 100, 445–462 (1959).Google Scholar
  5. - Main evolutionary lines among recent crustacea. In: Phylogeny and evolution of crustacea (ed. H. B. Whittington and W. D. I. Rolfe). Museum of comparative zoology, Spec. publ., 1–26 (1963).Google Scholar
  6. Debaisieux, P.: Les yeux des Crustacés, structure, développement, réactions à l'éclairement. Cellule 50, 9–122 (1944).Google Scholar
  7. —: Histologie et histogénèse chez Argulus foliaceus L. (Crustacé, Branchiure). Cellule 55, 245–290 (1953).Google Scholar
  8. Elofsson, R.: The nauplius eye and frontal organs in Malacostraca (Crustacea). Sarsia 19, 1–54 (1965).Google Scholar
  9. —: The nauplius eye and frontal organs of the non-Malacostraca (Crustacea). Sarsia 25, 1–128 (1966).Google Scholar
  10. —: The development of the compound eyes of Penaeus duorarum (Crustacea: Decapoda) with remarks on the nervous system. Z. Zellforsch. 97, 323–350 (1969).Google Scholar
  11. Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insekten und Crustaceen. Göttingen: Vandenhoeck & Ruprecht 1879.Google Scholar
  12. Hámori, J., Horridge, G. A.: The lobster optic lamina. I. General organization. J. Cell Sci. 1, 249–256 (1966).Google Scholar
  13. Hanström, B.: Untersuchungen über das Gehirn, insbesondere die Sehganglien der Crustaceen. Ark. Zool. 16, 1–119 (1924).Google Scholar
  14. —: Eine genetische Studie über die Augen und Sehzentren von Turbellarien, Anneliden und Arthropoden. Kgl. svenska Vetensk.-Akad. Handl. (3) 4, 1–176 (1926).Google Scholar
  15. —: Neue Beobachtungen über Augen und Sehzentren von Entomostraken, Schizopoden und Pantopoden. Zool. Anz. 70, 236–251 (1927).Google Scholar
  16. —: Neue Untersuchungen über Sinnesorgane und Nervensystem der Crustaceen, 1. Z. Morph. Ökol. Tiere 23, 80–236 (1931).Google Scholar
  17. —: The brain, the sense organs, and the incretory organs of the head in the Crustacea Malacostraca. Kgl. fysiogr. Sällsk. Lund Förh. 58, 1–45 (1947).Google Scholar
  18. Leder, H.: Über den feineren Bau des Nervensystems der Cladoceren. Zool. Anz. 43, 279–283 (1914).Google Scholar
  19. Madsen, N.: The anatomy of Argulus foliaceus Linné. Part. 1. Acta Univ. Lund., N. S. 74, 1–32 (1964).Google Scholar
  20. Parker, G. H.: The retina and optic ganglia in decapods, especially in Astacus. Mitt. zool. Stat. Neapel 12, 1–73 (1895).Google Scholar
  21. Retzius, G.: Zur Kenntnis des Nervensystems der Daphniden. Biol. Unters., N. F. 13, 107–112 (1906).Google Scholar
  22. Siewing, R.: Studies in malacostracan morphology: Results and problems. In: Phylogeny and evolution of crustacea (ed. H. B. Whittington and W. D. I. Rolfe). Museum of comparative zoology, Spec. publ. 85–110 (1963).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Rolf Elofsson
    • 1
  • Erik Dahl
    • 1
  1. 1.Zoological InstituteUniversity of LundLundSweden

Personalised recommendations