Advertisement

Current Genetics

, Volume 19, Issue 3, pp 207–213 | Cite as

Glutathione metabolism and heavy metal detoxification in Schizosaccharomyces pombe

Isolation and characterization of glutathione-deficient, cadmium-sensitive mutants
  • Hermann Glaeser
  • Anke Coblenz
  • Renate Kruczek
  • Ines Ruttke
  • Andrea Ebert-Jung
  • Klaus Wolf
Original Articles

Summary

Sixty glutathione-deficient mutants (gsh) of Schizosaccharomyces pombe have been isolated by their resistance towards the mutagen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and their sensitivity to the heavy metal Cadmium (Cd). fifty-three mutants show glutathione contents of less than 5% compared with the wild-type. The residual glutathione contents correlate with the resistance to MNNG, with the sensitivity to Cd and with the growth rate in minimal medium. The gsh, Cd-sensitive (Cds) mutants also show sensitivity to other heavy metals. Wild-type strains, but not the gsh mutants, are able to excrete the heavy metal, very likely as a sulfide-containing compound. This inability of the mutants to excrete Cd and other heavy metals causes an increase in Cd accumulation in the gsh mutants versus the wild-type. In 60% of the mutants the glutathione deficiency is very likely due to a deficiency in the enzyme glutathione synthetase (GS), the other 40% appear to be deficient in gamma-glutamyl-cysteine synthetase (GCS).

Key words

Glutathione Heavy metals Phytochelatins Fission yeast Cadmium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerboom TPM, Sies H (1981) Methods Enzymol 77:373–382Google Scholar
  2. Apontoweil P, Berends W (1975) Biochim Biphys Acta 399:10–22Google Scholar
  3. Astor BM (1984) Br J Radiol 57:717–722Google Scholar
  4. Babson JR, Abell NS, Red DJ (1981) Biochem Pharmacol 30:2299–2304Google Scholar
  5. Bouter S, Kerklaan PRM, Zoetemelk CEM, Mohn GT (1988) Biochem Pharmacol 37:577–581Google Scholar
  6. Brunborg G (1977) Int J Radiat Biol 32:285–292Google Scholar
  7. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989a) Nature 338:596–597Google Scholar
  8. Dameron CT, Smith BR, Winge DR (1989b) J Biol Chem 264:17355–17360Google Scholar
  9. Edgren M, Revesz L, Larsson A (1981) Int J Radiat Biol 40:355–363Google Scholar
  10. Frankenberg D, Kistler M, Eckardt-Schupp F (1987) Int J Radiat Biol 52:185–190Google Scholar
  11. Fuchs JA, Warner HR (1975) J Bacteriol 124:140–148Google Scholar
  12. Griffith OW, Meister A (1979) J Biol Chem 254:7558–7560Google Scholar
  13. Grill E, Zenk MH (1989) Chemie in unserer Zeit 23:193–199Google Scholar
  14. Grill E, Zenk MH, Winnacker EL (1985) Science 230:674–676Google Scholar
  15. Grill E, Winnacker El, Zenk MH (1986) FEBS Lett 197:115–120Google Scholar
  16. Grill E, Winnacker EL, Zenk MH (1987) Proc Natl Acad Sci USA 84:439–443Google Scholar
  17. Grill E, Löffler S, Winnacker El, Zenk MH (1989) Proc Natl Acad Sci USA 86:6838–6842Google Scholar
  18. Habig WH, Pabst MJ, Jakoby WB (1974) J Biol Chem 249:7130–7139Google Scholar
  19. Heldwein R, Tromballa HW, Brando E (1977) Z Allg Mikrobiol 17:299–308Google Scholar
  20. Högberg J, Anundi A, Kristoferson A, Rajs J (1980) In: Microsomes drug oxidations, and chemical carcinogenesis. Academic Press, New York, pp 769–772Google Scholar
  21. Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ (1987) Proc Natl Acad Sci USA 84:6619–6623Google Scholar
  22. Kerklaan PRM, Bouter S, Mohn G (1983) Mutat Res 122:257–266Google Scholar
  23. Kerklaan PRM, Bouter S, teKopele JM, Vermeulen NPE, van Bladeren PJ, Mohn G (1987) Mutat Res. 176:171–178Google Scholar
  24. Kistler M (1986) PhD thesis, University of MunichGoogle Scholar
  25. Kistler M, Summer KH, Eckardt F (1986) Mutat Res 173:117–120Google Scholar
  26. Kistler M, Maier K, Eckardt-Schupp F (1990) Mutagenesis 5:39–44Google Scholar
  27. Kondo N, Isobe T, Imai K, Got T (1985) Agric Biol Chem 49:71–83Google Scholar
  28. Kosower EM, Kosower NS (1969) Nature 224:117–120Google Scholar
  29. Lang BF, Wolf K (1984) Molec Gen Genet 196:465–472Google Scholar
  30. Larsson A, Orrenius S, Homgren A, Mannervik B (1983) Functions of gluthathione: Biochemical, physiological, toxicological, and clinical aspects. Raven Press, New YorkGoogle Scholar
  31. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:256–275Google Scholar
  32. Margison GP, O'Connor PJ (1979) In: Grover PL (ed) Chemical Carcinogens and DNA. CRC Press, Boca Raton, Florida, pp 111–152Google Scholar
  33. Martenson J, Meister A (1989) Proc Natl Acad Sci USA 86:471–475Google Scholar
  34. Mehra RK, Winge DR (1988) Arch Biochem Biophys 265:381–389Google Scholar
  35. Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Proc Natl Acad Sci USA 85:8815–8819Google Scholar
  36. Meister A (1983) In: Nygaard of and Simic M (eds) Radioprotectors and Anticarcinogens. Academic Press, New York, pp 121–151Google Scholar
  37. Meister A (1988) J Biol Chem 263:17205–17208Google Scholar
  38. Meister A, Anderson ME (1983) Annu Rev Biochem 52:711–760Google Scholar
  39. Meredith MJ, Reed DJ (1982) J Biol Chem 257:3747–3753Google Scholar
  40. Mitchell JB, Russo A (1983) Radiat Res 95:471–485Google Scholar
  41. Mohn G, de Knijff P, Baars A (1983) Mutat Res 111:25–31Google Scholar
  42. Moore WR, Anderson ME, Meister A, Murata K, Kimura A (1989) Proc Natl Acad Sci USA 86:1461–1464Google Scholar
  43. Murata K, Tani K, Kato J, Chibata I (1981) Agric Biol Chem 45:2131–2132Google Scholar
  44. Mutoh N, Hayashi Y (1988) biochem Biophys Res Commun 151:32–39Google Scholar
  45. Prazmo W, Balbin E, Baranowska H, Ejchart A, Putrament A (1975) Genet Res 26:21–29Google Scholar
  46. Racker E (1955) Methods Enzymol 2:722–725Google Scholar
  47. Reese RN, Winge DR (1988) J Biol Chem 263:12832–12835Google Scholar
  48. Shrieve DC, Harris JW (1986) Int J Radiat Oncolog Biol Phys 12:1171–1174Google Scholar
  49. Sies H, Ketterer B eds (1988) Glutathione conjugation: Mechanisms and biological significance. Academic Press, London San Diego New York Berkeley Boston Sidney Tokyo TorontoGoogle Scholar
  50. Steffens JC, Hunt DF, Williams BG (1986) J Biol Chem 261:13879–13882Google Scholar
  51. Süßmuth R, Lingens F (1969) Z Naturforsch 24b:903–910Google Scholar
  52. Wolf K (1987) In: Konghorn JR (ed) Gene structure in eukaryotic microbes. Special publications of the society of general microbiology, vol 22. IRL Press, Oxford Washington DC, pp 69–91Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Hermann Glaeser
    • 1
  • Anke Coblenz
    • 1
  • Renate Kruczek
    • 1
  • Ines Ruttke
    • 1
  • Andrea Ebert-Jung
    • 1
  • Klaus Wolf
    • 1
  1. 1.Institut für Mikrobiologie und Weinforschung der Johannes Gutenberg-UniversitätMainzFederal Republic of Germany

Personalised recommendations