Current Genetics

, Volume 19, Issue 3, pp 183–190 | Cite as

The role of coxI-associated repeated sequences in plant mitochondrial DNA rearrangements and radish cytoplasmic male sterility

  • Christopher A. Makaroff
  • Ingrid J. Apel
  • Jeffrey D. Palmer
Original Articles


The gene coxI, encoding subunit I of mitochondrial cytochrome c oxidase, has been characterized from the normal (fertile) and Ogura (male-sterile) cytoplasms of radish to determine if a previously identified mitochondrial DNA rearrangement, and its associated transcriptional differences, could play a role in Ogura cytoplasmic male sterility (CMS). The normal and Ogura loci are virtually identical for 2.8 kb, including a 527-codon open reading frame whose product is approximately 95% identical to other plant COXI polypeptides. A rearrangement 120 bp 5′ to the coding region results in different 5′ transcript termini for the two genes. A comparison of several crucifer mitochondrial DNAs indicates that this rearrangement also occurs in the normal radish cytoplasm and is, therefore, not involved in Ogura CMS. Sequences present at the coxI locus belong to at least two different dispersed repeat families, members of which are also associated with other rearranged genes in radish.

Key words

Brassica Mitochondrial DNA Cytoplasmic male sterility Recombination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Cell 47: 567–576Google Scholar
  2. Berk AJ, Sharp PA (1978) Cell 12: 721–732Google Scholar
  3. Birnboim HC, Doly J (1979) Proc Natl Acad Sci USA 7: 1513–1523Google Scholar
  4. Bland MM, Levings CS III, Matzinger DF (1986) Mol Gen Genet 204: 8–16Google Scholar
  5. Bland MM, Levings CS III, Matzinger DF (1987) Curr Genet 12: 475–481Google Scholar
  6. Bonen L, Boer PM, McIntosh JE, Gray MW (1987) Nucleic Acids Res 15: 6734Google Scholar
  7. Covello PS, Gray MW (1989) Nature 341: 662–666Google Scholar
  8. Dewey RE, Levings CS III, Timothy DH (1986) Cell 44: 439–449Google Scholar
  9. Gray MW (1989) Annu Rev Cell Biol 5: 25–56Google Scholar
  10. Grabau EA (1986) Plant Mol Biol 7: 377–384Google Scholar
  11. Gualberto JM, Lamaltenia L, Bonnard G, Weil J-H, Grienenberger JM (1989) Nature 341: 660–662Google Scholar
  12. Hanson MR, Young EG, Rothenberg M (1988) Phil Trans R Soc Lond B 319: 199–208Google Scholar
  13. Henikoff S (1984) Gene 28: 351–359Google Scholar
  14. Hiesel R, Schobel W, Schuster W, Brennicke A (1987) EMBO J 6: 29–34Google Scholar
  15. Isaac PG, Jones VP, Leaver CJ (1985) EMBO J 4: 617–1623Google Scholar
  16. Kolodner R, Tewari KK (1972) Proc Natl Acad Sci USA 69: 1830–1834Google Scholar
  17. Leaver CJ, Isaac PG, Small ID, Bailey-Serres J, Liddell AD, Hawkesford MJ (1988) Phil Trans R Soc Lond B 319: 165–176Google Scholar
  18. Lonsdale LM (1987) Plant Physiol Biochem 25: 265–271Google Scholar
  19. Lonsdale DM, Hodge TP, Fauron CM-R (1984) Nucleic Acids Res 12: 9249–9261Google Scholar
  20. Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottman WH (1988) Phil Trans R Soc Lond B 319: 149–163Google Scholar
  21. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 107–147Google Scholar
  22. Makaroff CA, Palmer JD (1987) Nucleic Acids Res 15: 5141–5156Google Scholar
  23. Makaroff CA, Palmer JD (1988) Mol Cell Biol 8: 1474–1480Google Scholar
  24. Makaroff CA, Apel IJ, Palmer JD (1989) J Biol Chem 264: 11706–11713Google Scholar
  25. Makaroff CA, Apel IJ, Palmer JD (1990) Plant Mol Biol (in press)Google Scholar
  26. Newton K (1988) Annu Rev Plant Physiol Plant Mol Biol 39: 503–532Google Scholar
  27. Nugent JM, Palmer JD (1988) Curr Genet 14: 501–509Google Scholar
  28. Palmer JD (1986) Methods Enzymol 118: 167–186Google Scholar
  29. Palmer JD (1988) Genetics 118: 341–351Google Scholar
  30. Palmer JD, Herbon LA (1986) Nucleic Acids Res 14: 9755–9765Google Scholar
  31. Palmer JD, Herbon LA (1987) Curr Genet 11: 565–570Google Scholar
  32. Plamer_JD, Herbon LA (1988) J Mol Evol 28: 87–97Google Scholar
  33. Pruit KD, Hanson MR (1989) Curr Genet 16: 281–291Google Scholar
  34. Rottmann WH, Brears T, Hodge TP, Lonsdale DM (1987) EMBO J 6: 1541–1546Google Scholar
  35. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74: 5463Google Scholar
  36. Schuster W, Brennicke A (1987) Nucleic Acids Res 15: 9092Google Scholar
  37. Schuster W, Brennicke A (1989) Curr Genet 15: 187–192Google Scholar
  38. Schuster W, Wissinger B, Unseld M, Brennicke A (1990) EMBO J 9: 263–269Google Scholar
  39. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5: 2043–2049Google Scholar
  40. Stern DB, Newton KJ (1986) Methods Enzymol 118: 488–496Google Scholar
  41. Young EG, Hanson MR, Dierks PM (1986) Nucleic Acids Res 14: 7995–8006Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Christopher A. Makaroff
    • 1
  • Ingrid J. Apel
    • 2
  • Jeffrey D. Palmer
    • 3
  1. 1.Department of ChemistryMiami UniversityOxfordUSA
  2. 2.Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA
  3. 3.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations