Advertisement

Biology and Fertility of Soils

, Volume 13, Issue 3, pp 130–134 | Cite as

Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N in a spruce (Picea abies L.) forest soil

  • M. von Lützow
  • L. Zelles
  • I. Scheunert
  • J. C. G. Ottow
Article

Summary

Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N and some physicochemical properties of different topsoil horizons in a spruce forest (Picea abies L.) were measured throughout one growing season. The highest biomass N was recorded in autumn and spring in the upper soil horizons, while the lowest values were obtained in summer and in deeper horizons. The clearest differences between the different soil treatments were apparent in autumn and in the upper horizons. Liming increased the microbial biomass N from 1.7% of the total N content to 6.8% (Olf1 layer) and from 1% to 2% of the total N content in the Of2 layer. The main inorganic-N fraction in the deeper horizons was NO inf3 sup- . An increase in cation exchange capacity was observed down to the Oh layer, while soil pH was only slightly higher in the Olf1 and Of2 layers after liming. The effects of irrigation were less marked. The microbial biomass N increased from 1.7% of total N to 4.8% in the Olf1 layer and from 1% to 2% of total N in the Of2 layer. In the Olf1 layer an increase in C mineralization was observed. Acid precipitation decreased the microbial biomass N in the upper horizons from 4.8% of total N to 1.8% in the Olf1 layer and from 2% to 0.5% in the Of2 layer. No significant changes in soil pH were observed, but the decrease in cation exchange capacity may result in a decrease in the proton buffering capacity in the near future.

Key words

Microbial biomass N Spruce forest Acid deposition Irrigation Liming Carbon mineralization Picea abies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adu KJ, Oades JM (1978) Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biol Biochem 10:109–115Google Scholar
  2. Anderson JPE, Domsch KH (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci 130:211–216Google Scholar
  3. Azam F, Malik KA, Hussain F (1986) Microbial biomass and mineralization-immobilization of nitrogen in some agricultural soils. Biol Fertil Soils 2:157–163Google Scholar
  4. Baath E, Berg B, Lohm U, Lundgren B, Lundkvist H, Rosswall T; Söderström B, Wiren A (1980) Soil organisms and litter decomposition in a Scots pine forest. In: Hutchinson TC, Havas M (eds) Proceedings NATO Conference on Effects of Acid Precipitation on Vegetation and Soils, series I. Ecology 4, Plenum Press, New York London, pp 375–380Google Scholar
  5. Burford JR, Bremner JM (1975) Relationship between the denitrification capacities of soil and total water-soluble readily decomposable soil organic matter. Soil Biol Biochem 7:389–394Google Scholar
  6. Brookes PC, Kragt P, Powlson DS, Jenkinson DS (1985a) Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biol Biochem 17:831–835Google Scholar
  7. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985b) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842Google Scholar
  8. Chet J, Merg G, Hüttermann A (1984) The effect of acid rain on microbial population, biomass and activity. Ber Forschungszentrums Waldökosysteme/Waldsterben 3:135–152Google Scholar
  9. Clarholm M, Rosswall T (1980) Biomass and turnover in a forest soil and a peat. Soil Biol Biochem 12:49–57Google Scholar
  10. Ehrenberger F, Gorbach S (1973) Methoden der organischen Elementar-Spurenanalyse. Verlag Chemie, WeilheimGoogle Scholar
  11. Kreutzer K, Bittersohl J (1986) Untersuchungen über die Auswirkungen des sauren Regens und der kompensatorischen Kalkung im Wald. Forstwiss Centralbl 105:211–380Google Scholar
  12. Lang E, Beese F (1985) Die Reaktion der mikrobiellen Bodenpopulation auf Kalkungsmassnahmen. Allg Forstz 43:1166–1169Google Scholar
  13. Lohm U, Larsson K, Nömmik H (1984) Acidification and liming of coniferous forest soil: Long-term effects on turnover rates of carbon and nitrogen during an incubation experiment. Soil Biol Biochem 16:343–346Google Scholar
  14. Lynch JM, Panting LM (1982) Effects of season, cultivation and nitrogen fertilizer on the size of the soil microbial biomass. J Sci Food Agric 33:249–252Google Scholar
  15. Mai H, fiedler HJ (1979) Bodenmikrobiologische Untersuchungen an einem Fichtendüngungsverusch im Rauchschadgebiet des Erzgebirges. Zentralbl Bakteriol, Parasitenkd, Infektionskr Hyg Abt I, 134:651–659Google Scholar
  16. Mai H (1990) Bodenmikrobiologische Untersuchungen auf dem Ökologischen Meßfeld im Tharandter Wald. Zentralbl Mikrobiol 145:293–304Google Scholar
  17. Navone K (1964) Proposed method for nitrate in potable waters. J Am Water Works Assoc 56:781–783Google Scholar
  18. Nömmik H (1978) Mineralization of carbon and nitrogen in forest humus as influenced by addition of phosphate and lime. Acta Agric Scand 28:221–230Google Scholar
  19. Powlson DS, Brookes PC (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164Google Scholar
  20. Prenzel J (1982) Ein bodenchemisches Gleichgewichtsmodell mit Kationenaustausch und Aluminiumhydroxosulfat. Gött Bodenkd Ber 72:1–113Google Scholar
  21. Sachs L (1984) Angewandte Statistik Springer Verlag, Berlin HamburgGoogle Scholar
  22. Schlichting G, Blume HP (1966) Bodenkundliches Praktikum, Verlag Paul Parey, Hamburg BerlinGoogle Scholar
  23. Zelles L, Scheunert I, Kreutzer K (1987) Effect of artificial irrigation, acid precipitation and liming on the microbial activity in soil of a spruce forest. Biol Fertil Soils 4:137–143Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. von Lützow
    • 1
    • 2
  • L. Zelles
    • 1
  • I. Scheunert
    • 1
  • J. C. G. Ottow
    • 2
  1. 1.Institut für Ökologische ChemieGSFNeuherbergGermany
  2. 2.Institut für Mikrobiologie und LandeskulturJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations